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"According to studies..."
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.
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e What would be the right question in this setting?
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Simpson’s Paradox

Patients with ~ Patients with

Overall small stones large stones
’g‘reatment A: 78% (273/350)  93% (81/87) 73% (192/263)
pen surgery
Treatment B:

83% (289/350) 87% (234/270)  69% (55/80)

Percutaneous nephrolithotomy

Figure: Success rates of two treatments for kidney stones

o Treatment B seems to perform better overall (83%)
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Simpson’s Paradox

Patients with ~ Patients with

Overall small stones large stones
’g‘reatment A: 78% (273/350)  93% (81/87) 73% (192/263)
pen surgery
Treatment B:

83% (289/350) 87% (234/270)  69% (55/80)

Percutaneous nephrolithotomy

Figure: Success rates of two treatments for kidney stones

o Treatment B seems to perform better overall (83%)
o But treatment A performs better in both settings
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Posing correct questions

o Correlation vs. Causality
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Posing correct questions

Correlation vs. Causality

Missing background knowledge can lead to false conclusions

Correlation does not imply causality

Mostly we're interested if A is having a direct effect on (causing) B

What are possible causal explanations if A is correlated to B?

— i) A causes B, ii) B causes A or iii) hidden actor Z causes A and B
— Reichenbachs common cause principle is provable
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Hidden Cause/Actor

¢ In 1999 research established a significant correlation between the
presence of a nightlight in a child’s bedroom and myopia
(shortsightedness).
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Hidden Cause/Actor

¢ In 1999 research established a significant correlation between the
presence of a nightlight in a child’s bedroom and myopia
(shortsightedness).

¢ In 2000 follow-up research found out that parents with myopia are
more likely to put a nightlight in their child’s bedroom. Their children
also are more inclined to develop myopia for genetical reasons.
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Motivation

"Correlation does not imply causation" <« PX & PX
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Graphs

e Agraph G = (V, &) consists of nodes V and edges £ C V? with
(v,v)¢ & VveVv.
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Graphs

e Agraph G = (V, &) consists of nodes V and edges £ C V? with
(v,v)¢ & VveVv.

e jisaparentofjif (i,j) € £and (j,i) ¢ &, i.e. jis achild of i

e an edge is undirected if (i, /) € £ and (j, /) € &, otherwise it is
directed

¢ 3 nodes form an immorality (or v-structure) if one is the child of the
two others that themselves are not adjacent

¢ a (directed) path is a sequence of distinct i, ..., i, € V with a
(directed) edge between i, and ik, forall k =1,...,n—1

¢ all j with a directed path from i to j are called descendants of /, the set
of all descendants of i is denoted by DEY

e we identify the nodes j € V with the random variables X; € X
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DAGs

¢ adirected acyclic graph (DAG) is G in which there exists no (i, j) with
directed paths from i to j and from j to /, and all the edges are directed
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DAGs

¢ adirected acyclic graph (DAG) is G in which there exists no (i, j) with
directed paths from i to j and from j to /, and all the edges are directed
¢ in a DAG, the disjoint A, B C V are d-separated by a also disjoint
S C V if every path between nodes in A and B is blocked by S, i.e. for

every path iy to ip:
— ik € Sand ix_q1 — ix —> lke1 OF dg_q < Ik < lgp1 OF i1 < Ik —> lga
— ix—1 — ix < ix+1 and neither i, nor any of its descendants isin S
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Topological Ordering

Proposition:
For each DAG exists a topological ordering = € Sy, thatis a
bijective mapping

m:{1,..,p} = {1,...,p}

that satisfies
m(i) < n(j) if j€ DEY
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Structural Equation Model

Definition:
A structural equation model (SEM) is S := (S, PV), where
S = (54,..., Sp) are equations

Si: X =f(PA,N), j=1,..p
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Interventions

Having established the SEM structure, we now can construct new
distributions by changing (intervening upon) structural equations.

Definition (Intervention Distribution)

Consider the distribution SEM (S, PN) ~» PX, We now can replace one or
multiple equations and obtain a new SEM S. The new distribution ]P’g is
called the intervention distribution and the variables whose structural
equations have been changed have been intervened on. We introduce the
do operator:

X|do(X;=7(PA;,N}))

X _.
]P)§=. PS
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Example for an Intervention (Kidney Stones)
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e New and old N’s need to be independent
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e New and old N’s need to be independent

e Two special cases
— The new equation can either keep the same parents but change their
influence or restructure the noise component (called imperfect)
— The new equation is of the type do(X; = a) (called perfect)

o Example: Suppose S is
X = Ny

Y =4-X+Ny

with Ny, Ny ~ N (0, 1) Compare the intervention distribution of Y for
do(X = 2) and do(X = 3) with P}s/? Now reverse the roles of X and Y.
What happens?
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Causal Effect

Definition (total causal effect)
Given a SEM §

X has a causal effect on Y < X I Y in PX%X=N0

TFAE:
e There is a causal effect Xto Y
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Causal Effect

Definition (total causal effect)
Given a SEM §

X has a causal effect on Y < X L Y in PX%%= Nx)

TFAE:

e There is a causal effect Xto Y

e There are a,bsit. IP’Y|d°X 3 7=’IP>Y|d° (X=0)

e Thereis an as.t. IP’Y|d°X 2 4Py

o XL YinPy YI1doX=R5) g any Ay whose dist. has full support
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Remark:

¢ If there is no directed path from X to Y, then there is no causal effect

e Sometimes there is a directed path, but no causal effect.
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Definition (Markov Property & Theorem)
Given a DAG G and a joint distribution PX, this distribution is said to satisfy

o the global Markov property with respect to G if
A,B d-sep. by C = A 1l B| C V disjoint sets A,B,C
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Definition (Markov Property & Theorem)
Given a DAG G and a joint distribution PX, this distribution is said to satisfy

o the global Markov property with respect to G if
A,B d-sep. by C = A1l B | C V disjoint sets A,B,C

¢ the local Markov property with respect to G if each variable is
independent of its non-descendants given its parents
o the Markov factorization property with respect to G if

p
p(x) = p(x1, ..., X, Hp Xj|XijG)
j=1

e IF PX has a densitiy p (w.r.t. a product measure), then all Markov
properties above are equivalent!
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Reichenbach’s common cause principle can be proven using the previous
Definitions and Theorem.

Proposition:
Assume that any pair of variables X and Y can be embedded into a larger
system in the following sense: there exists a correct SEM over the collection
X of random variables that contains X and Y with graph G. Then the
Reichenbach’s common cause principle follows from the Markov property in
the following sense: If X and Y are dependent, then there is

e cither a directed path from Xto Y
e orfromY to X

e or there’s a node T with a directed path from T to X and from T to V.
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Example:

Let the decision to study in Zurich (Z = 1) be determined only by whether one likes
nature (N = 1) and whether one thinks ETH is a solid university (U = 1). How could
the SEM look?
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.N:NN
.U:NU
o« Z=(NVU &N,
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Example:

Let the decision to study in Zurich (Z = 1) be determined only by whether one likes
nature (N = 1) and whether one thinks ETH is a solid university (U = 1). How could
the SEM look?

o N=Ny

o U=Ny

e Z=(NVU)® Ny

e choose Ny, Ny ~™@ Ber(0.5) and Nz ~ Ber(0.1)
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From the SEM we can see that N and U are assumed to be independent. If
you ask engineering students in Zurich (you condition on Z = 1, the
answers to whether they like nature or think that ETH is a good university
become anti-correlated: if someone is not a fan of nature, he probably likes
ETH and vice versa. (Else he’'d probably not have studied at ETH due to
Ber(0.1)). So we have

N U|(Z =1).
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Truncated Factorization

Consider SEM S with structural equations
X = (Xoaty N)

and density ps. We have
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Truncated Factorization

Construct S from S by do(Xx = Ni)

P
pS,do(Xk=Nk)(X1’ ey Xp) = Hps,do(xk=Nk)(Xj|Xpa(j)) = HPS(Xj’Xpa(j)),b(Xk)
J=1 J#k

Special Case:

Hj;/k Ps(Xj|Xpa)) 1 Xk = a

PS.do(Xc=a) (X1, - s Xp) =
e g {0 otherwise
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