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"According to studies..."
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• What would be the right question in this setting?

• Numerous studies concern themselves only with correlation

• This can be very misleading

• http://tylervigen.com/spurious-correlations
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Simpson’s Paradox

Figure: Success rates of two treatments for kidney stones

• Treatment B seems to perform better overall (83%)

• But treatment A performs better in both settings
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Posing correct questions

• Correlation vs. Causality

• Missing background knowledge can lead to false conclusions

• Correlation does not imply causality

• Mostly we’re interested if A is having a direct effect on (causing) B

• What are possible causal explanations if A is correlated to B?

– i) A causes B, ii) B causes A or iii) hidden actor Z causes A and B
– Reichenbachs common cause principle is provable
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Hidden Cause/Actor

• In 1999 research established a significant correlation between the
presence of a nightlight in a child’s bedroom and myopia
(shortsightedness).

• In 2000 follow-up research found out that parents with myopia are
more likely to put a nightlight in their child’s bedroom. Their children
also are more inclined to develop myopia for genetical reasons.
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Motivation

"Correlation does not imply causation" ⇔ PX 6= P̃X
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Graphs

• A graph G = (V , E) consists of nodes V and edges E ⊆ V 2 with
(v , v ) /∈ E ∀v ∈ V .

• i is a parent of j if (i , j) ∈ E and (j , i) /∈ E , i.e. j is a child of i
• an edge is undirected if (i , j) ∈ E and (j , i) ∈ E , otherwise it is

directed
• 3 nodes form an immorality (or v-structure) if one is the child of the

two others that themselves are not adjacent
• a (directed) path is a sequence of distinct i1, ... , in ∈ V with a

(directed) edge between ik and ik+1 for all k = 1, ... , n − 1
• all j with a directed path from i to j are called descendants of i , the set

of all descendants of i is denoted by DEG
i

• we identify the nodes j ∈ V with the random variables Xj ∈ X
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DAGs

• a directed acyclic graph (DAG) is G in which there exists no (i , j) with
directed paths from i to j and from j to i , and all the edges are directed

• in a DAG, the disjoint A, B ⊂ V are d-separated by a also disjoint
S ⊂ V if every path between nodes in A and B is blocked by S, i.e. for
every path i1 to in:

– ik ∈ S and ik−1 → ik → ik+1 or ik−1 ← ik ← ik+1 or ik−1 ← ik → ik+1

– ik−1 → ik ← ik+1 and neither ik nor any of its descendants is in S
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Topological Ordering

Proposition:
For each DAG exists a topological ordering π ∈ Sp, that is a
bijective mapping

π : {1, ... , p} → {1, ... , p}

that satisfies
π(i) < π(j) if j ∈ DEG

i
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Structural Equation Model

Definition:
A structural equation model (SEM) is S := (S,PN ), where
S = (S1, ... , Sp) are equations

Sj : Xj = fj (PAj , Nj ), j = 1, ... , p
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Interventions

Having established the SEM structure, we now can construct new
distributions by changing (intervening upon) structural equations.

Definition (Intervention Distribution)
Consider the distribution SEM (S,PN) PX. We now can replace one or
multiple equations and obtain a new SEM S̃. The new distribution PN

S̃ is
called the intervention distribution and the variables whose structural
equations have been changed have been intervened on. We introduce the
do operator:

PX
S̃ =: PX|do(Xj =f̃ (P̃Aj ,Ñj ))

S
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Example for an Intervention (Kidney Stones)
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• New and old N ’s need to be independent

• Two special cases

– The new equation can either keep the same parents but change their
influence or restructure the noise component (called imperfect)

– The new equation is of the type do(Xj = a) (called perfect)

• Example: Suppose S is
X = NX

Y = 4 · X + NY

with NX , NY ∼ N (0, 1) Compare the intervention distribution of Y for
do(X = 2) and do(X = 3) with PY

S ? Now reverse the roles of X and Y.
What happens?
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Causal Effect

Definition (total causal effect)
Given a SEM S

X has a causal effect on Y ⇔ X 6⊥⊥ Y in PX|do(X=ÑX )
S

TFAE:

• There is a causal effect X to Y

• There are a, b s.t. PY |do(X=a)
S 6= PY |do(X=b)

S

• There is an a s.t. PY |do(X=a)
S 6= PY

S

• X 6⊥⊥ Y in PX ,Y |do(X=ÑX )
S for any ÑX whose dist. has full support
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Remark:

• If there is no directed path from X to Y, then there is no causal effect

• Sometimes there is a directed path, but no causal effect.
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Definition (Markov Property & Theorem)
Given a DAG G and a joint distribution PX, this distribution is said to satisfy

• the global Markov property with respect to G if
A,B d-sep. by C⇒ A⊥⊥ B | C ∀ disjoint sets A,B,C

• the local Markov property with respect to G if each variable is
independent of its non-descendants given its parents

• the Markov factorization property with respect to G if

p(x) = p(x1, ..., xp) =
p∏

j=1

p(xj |xPAG
j
)

• IF PX has a densitiy p (w.r.t. a product measure), then all Markov
properties above are equivalent!
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Reichenbach’s common cause principle can be proven using the previous
Definitions and Theorem.

Proposition:
Assume that any pair of variables X and Y can be embedded into a larger
system in the following sense: there exists a correct SEM over the collection
X of random variables that contains X and Y with graph G. Then the
Reichenbach’s common cause principle follows from the Markov property in
the following sense: If X and Y are dependent, then there is

• either a directed path from X to Y

• or from Y to X

• or there’s a node T with a directed path from T to X and from T to Y.
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Example:

Let the decision to study in Zurich (Z = 1) be determined only by whether one likes
nature (N = 1) and whether one thinks ETH is a solid university (U = 1). How could
the SEM look?

• N = NN

• U = NU

• Z = (N ∨ U)⊕ NZ

• choose NN , NU ∼iid Ber(0.5) and NZ ∼iid Ber(0.1)
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From the SEM we can see that N and U are assumed to be independent. If
you ask engineering students in Zurich (you condition on Z = 1, the
answers to whether they like nature or think that ETH is a good university
become anti-correlated: if someone is not a fan of nature, he probably likes
ETH and vice versa. (Else he’d probably not have studied at ETH due to
Ber(0.1)). So we have

N 6⊥⊥ U|(Z = 1).
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Truncated Factorization

Consider SEM S with structural equations

Xj = fj (Xpa(j), Nj )

and density pS . We have

pS (x1, ... , xp) =
p∏

j=1

pS (xj |xpa(j))
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Truncated Factorization

Construct S̃ from S by do(Xk = Ñk )

pS,do(Xk =Ñk )(x1, ... , xp) =
p∏

j=1

pS,do(Xk =Ñk )(xj |xpa(j)) =
∏
j 6=k

pS (xj |xpa(j))p̃(xk )

Special Case:

pS,do(Xk =a)(x1, ... , xp) =


∏

j 6=k pS (xj |xpa(j)) if xk = a

0 otherwise
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