Upper confidence bound strategy on stochastical bandits

Multiarmed bandit: K arms, at each step we can choose one arm to be pulled while
the other K-1 arms stay frozen (no reward).

e Stochastic bandit: Each arm has fixed distribution in all rounds.
e Adversarial bandit: Bandits can change payout in each round.
e Markovian bandit: Activated arm changes in a "Markovian style’.

We are only looking at stochastic bandits and Markovian bandits.

Stochastic bandits

K arms with an unknown, fixed probability distribution vy, ..., vk on [0,1]. At each step
t =1,2,... choose arm I; € {1,..., K} and draw reward Xy, ; ~ vy, independent of the
past.

Let p; be the mean of v;, u* = _max_ and ¢* € argmax [;.
B i=1,.,K

The regret after n rounds is defined as R,, := max Yo X — > X
i=1,...,

By defining N, (i) = > _;_, 17,—;, i.e number of times arm i is pulled up to time n, and let
A; = p* — p; we can rewrite the pseudo-regret as

The upper confidence bound strategy (UCB)

For the UCB strategy we need the following assumption:
There is a convex function ¢ on R such that, VA > 0:

InEAXERXD < 4p(A), and InEMEXI=X) < 4(A) (1)
Note that if X € [0,1] we can take ¢)(\) = A\?/8. (Hoeffding’s lemma)
The Legendre-Fenchel (also known as the convex conjugate) of ¢ is defined as

¥*(€) = sup(Ae — (1))
S
Note that for (\) = A\?/8 we have 1)*(¢) = 2¢?
Let [i; s be the sample mean of the rewards, i.e fi; s = %Z;l X s in distribution since
the rewards are i.i.d.
By Markov’s inequality and by equation (1) we obtain
P(p; — fiis > €) < eV (2)

And by defining 6 = e=*¥"() we have, with probability at least 1 — ¢

o+ () CI0(5) >

Hence, for a parameter o > 0 the («,1)-UCB strategy is to select the arm

alnt
I; € argmax | fi; n,_, (i) + *1( )]
! i:% ..... K s + (97) Ni_1(1)




Theorem (Pseudo-regret for UCB strategy):
Assume that the v; satisfy the convex assumption (1). Then the pseudo-regret for a
(cr,1)-UCB stategy with a > 2 satisfies

— al\; o
< - -
s AZ <w*<Ai/2> S 2)

If we have X € [0, 1], using 1*(¢) = 2¢2, then

— 2c0 «
R, < Z (Elnn+a_2)

i:>0 v

Lower bound for Bernoulli-distributed rewards

For the following result, we are assuming that X;; ~ Bernoulli(p, q) with p,q € [0, 1]

Theorem (Lower bound):
Assume EN,,(i) = o(n®) for a > 0 and that A; > 0 Vi. Then we have

lim mf —_— >
n—oo Inn AZ>0 k:l (s, 14

where kl(p;, *) = p; In (%) + (1 — ) In (1 L“) is the Kullback-Leibler divergence.

Comparision of lower & upper bound

We have that

(1" — p)?
pe(l = p*)
which follows from In x < z — 1. Hence, the lower bound satisfies
R,
liminf — >

> u*(l—u)

Comparing this with the upper bound

we see that the difference between upper and lower bound for a Bernoulli-distributed
reward is given by some constants.
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Markovian bandits

Again we consider K arms, at each step we can choose one arm to be pulled while the
remaining K-1 arms stay frozen. But now the rewards of the pulled arm can change its
state in a "Markovian style’, i.e the arm produces reward r(z;) and changes start to x;yq
according to a Markov dynamic x — y with P(z,y)

The goal now it to maximize a B-discounted reward

Z Ty ($it (t))ﬁt]

where i; is the arm pulled at time t and 0 < [ < 1 is the discounting factor. This
discounted reward is maximized by forward induction.
It can be shown (not part of the talk) that the biggest Gittins index

B[ rili()) B xi(0) = ]
Gi(z;) = ST‘;E) E[ L Bta(0) = 7]

E

, where 7 is a stopping time,

is enough to determine which arm is to be pulled.

Note that the numerator denotes the discounted rewards up to 7 and the denumerator
represents the discounted time up to 7.

Hence, we can find the best strategy by computing the Gittins Index for all arms, where
each index is independent of all other arms. Thus, we only need to solve a K-dimensional
problem in each step, which greatly reduces the computational work.
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