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1 Notations and Setting.

1. We use the theoritical framework of Markov Decision Processes(MDP)
to describe the game evolution. Episodes are just different games.
Denote by

e t € {1,2,..T;} describes the different steps of the episode i (we
will drop 4 for clarity).
° (St)te{m,m;p} the process of different states of the game.

® (Si,at)ieqi,2,.. 7y the state-action pairs. The actions which can
be taken depend on the current state

® (Rt)ieq1,2,..1} the process of rewards following a triple (state,action,resulting
state).

2. MDP’s are about an agent taking decision in an environment.

It is formalized by a policy function 7
m(als) is the probability of taking action a being in state s.
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3. State value function:

Ufr(s) =E, ( Z Ritita

1=0

4. Action-State value function:

ar(s,a) = Ex ( > Rivin
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5. Policy improvement theorem

Let 7, ©’ be deterministic policies on the same environment, then if
for all states s

Gr (5,7 (s)) = vr(s)

We have that for all s € S v/(s) > v(s) and so 7" > 7.



The main idea in Monte Carlo methods is that instead of looking into the
complicated probabilistic behaviour of the environment we just learn
from experience, from our successes and mistakes.

2 Monte Carlo prediction: Estimation of the value
functions.

We estimate the value functions just by recording the gain following the visit
to some state s or state-action pair (s,a) and take the average.

Suppose we have n episodes and let N(s) be the enumeration of episodes
which visited s.

Then we define 9,(s) as follows:
1 n
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Each return is an i.i.d. estimate of the true value of v, (s).

Similarly for the Action-state value function
1 n
Gr(s,0) = —— > R;I;
QW( ) |N(S, a)| pt 14i€N(s,a)
Assumptions to maintain exploration:

e Every pair has non-zero probability of being selected as start. We call
this Exploring Starts.

e Use stochastic policies which have a non-zero probability of selecting
all available actions in each state.

Here is the corresponding algorithm

Initialize:
m + policy to be evaluated
V' + an arbitrary state-value function
Returns(s) «+ an empty list, for all s € 8§

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G + return following the first occurrence of s
Append G to Returns(s)
Vi(s) « average(Returns(s))




3 Monte Carlo control: Improvement of the poli-
cies
We use the Generalized Policy Iteration.
We start with an arbitrary policy mg. At each step we evaluate the state-

action function g, with Monte Carlo prediction, and select as new policy
mi+1 the greedy policy corresponding to gr,:

Tit1(s) = argmax ¢;(s, a)
a

3.1 How to obtain better convergence result to the optimal
policy

We update the policy after each episode instead of waiting for many
episodes.

Initialize, for all s € §, a € A(s):
(Q(s,a) + arbitrary
m(s) + arbitrary
Returns(s, a) + empty list

Repeat forever:
Choose Sy € 8§ and Ag € A(Sp) s.t. all pairs have probability = 0
Generate an episode starting from Sp, Ag, following m
For each pair s, a appearing in the episode:
(& + return following the first occurrence of s, a
Append G to Returns(s,a)
(5, a) + average( Returns(s.a))
For each s in the episode:
m(8) + argmax, (s, a)

3.2 How to remove exploring starts assumption?
3.2.1 Use soft policies

Soft policy is a policy m such that for all state s and action a € A(s),
m(als) >0

For example an e-greedy policy instead of the greedy one in Monte Carlo
control algorithm:

ﬁ for the non-greedy action

m(als) = ; :
1—e+ TAG)T for the greedy action
With this way of improving policy it can be shown that we still converge
to the optimal policy.



3.2.2 With off-policy methods.

Off-policy learning method is a way of learning the value functions of a
policy via samples generated from another policy.

This way we can generate samples maintaining exploration and still get the
right value function.

e 7 the target policy

e 4 the behavior policy(from which we sample from)

Coverage assumption: 7(a,s) > 0= pu(a,s) >0
We define the relative probability of the trajectory under the target and
behavior policies

T = [T =1 7 (AwklSk)p(Sk1] Sk, Ax) _ Tﬂl 7 (Ak|Sk)
LTI i ARlSE)DP(Skan| Sy Ak) oy #(ARISK)

Suppose we have gathered experience in the form of n episodes.
Let N(s) be the enumeration of episodes which visited state s.
Let T'(s, k) be the first time when state s is visited in episode k. The time
of the terminal state of episode k is denoted as T'(k) .

Our estimates for the target policy state value function is then:

T()
br(s) = 2ieN(s) P1(s,i)
" IN(s)]

This is what we call ordinary importance sampling.
oy
2 ieN(s) pN((Zs),i)Gi

T(¢
22ieN(s) pN((s),i)

or(s) =

This is what we call weighted importance sampling.
Main idea: Instead of taking the usual average we give more weight to
the events that are more likely to occur under .
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