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Series 8

1. The dataset heart.dat contains data for 99 people grouped by age. In each age group the total
number of individuals (mi) is known, as well the number of those with symptoms of heart disease
(Ni). The goal of this exercise is to estimate the probability of having such symptoms as a function
of age using logistic regression.

The data is located at http://stat.ethz.ch/Teaching/Datasets/heart.dat.

a) In contrast to the binary classification example in the lecture notes (page 54), the response
variable N has not a Bernoulli, but a binomial distribution: N1, . . . , Nn independent, Ni ∼
Binomial(mi, π(xi)).

Show that the log-likelihood is in this case

`(β; (x1,m1, N1), . . . , (xn,mn, Nn)) =

n∑
i=1

[
log

(
mi

Ni

)
+Nig(β;xi) −mi log

(
1 + eg(β;xi)

)]
,

where g(β;x) = β0 + β1x is the model function for the logistic transform of π(x) (see section 6.4
of the lecture notes).

b) Write an R function neg.ll(beta, data) that calculates the negative log-likelihood

−`(β; (x1,m1, N1), . . . , (xn,mn, Nn))

that you derived in task a). beta is a vector with two entries β0 and β1, and data is a data frame
with columns age, m and N (as in heart.dat).

Make a contour plot of the negative log-likelihood of the heart dataset in the range −10 ≤ β0 ≤
10, −1 ≤ β1 ≤ 1.

R hint: use a function call like

> contour(beta0.grid, beta1.grid, neg.ll.values)

beta0.grid and beta1.grid are equidistant grids of values of β0 and β1 in the region of interest;
use, e.g.

> beta0.grid <- seq(-10, 10, length = 101)

neg.ll.values is a matrix of negative log-likelihood values for the different values of β0 and β1.

c) Estimate the parameters β0 and β1 of the model function (see task a)) using the R function glm.
Does age influence this probability in a significant way? How do you interpret the sign of the
coefficient of age?

Compare the estimates from glm with estimates you get when minimizing the negative log-
likelihood function you implemented in task b).

R hint: the logistic regression model can be fitted by using the function call

> fit <- glm(cbind(N, m - N) ~ age, family = binomial, data = heart)

Binomial responses Ni ∼ Bin(mi, πi) for mi > 1 should be entered as a (two-column) matrix,
with the number of “successes” (Ni) in the first column and the number of “failures” (mi − Ni)
in the second.

To minimize your function neg.ll from task b), use

> optim(c(0, 0), neg.ll, data = heart)

The first argument is the start value used for numerical optimization.

d) Plot the probability estimate against age. At what age would you expect 10%, 20%, . . . , 90% of
people to have symptoms of heart disease? Discuss your results.

R hint: you can obtain probability estimates at arbitrary ages new.age by using the function
call

> predict(fit, newdata = data.frame(age = new.age), type = "response")
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2. In this exercise we are investigating the ozone dataset which you have already seen in the lecture.
The dataset ozone is available in numerous R-packages, e.g. in the package gss. You can load it with
data(ozone, package = "gss"). If you do not have access to the package, you can get the data
from http://stat.ethz.ch/Teaching/Datasets/ozone.dat. A short description of the variables is
available at help(ozone, package = "gss").

R-Hints:
Use the R-skeleton available on the course’s webpage.

a) Get an overview of the data with pairs(). You should take the log of the response (upo3) and
remove the outlier in the predictor wdsp. Explain why you should do this.
R-Hints:
The transformation can be done using:

ozone$logupo3 <- log(ozone$upo3)

d.ozone <- subset(ozone, select=-upo3)

b) We want to compare linear regression with an additive model (7.2 in the lecture notes).

In order to better fit the model, we allow polynomial fits of the data in the predictive variables
up to degree d for linear regression, i.e.

yi = β0 + β1,1xi1 + β1,2x
2
i1 + ...β1,dx

d
i1 + ...+ βp,1xip + βp,2x

2
ip + ...βp,dx

d
ip + εi.

This means instead of having p+ 1 predictive variables we have pd+ 1.

Here we fit the 5 models with linear regression for the degrees up to 5. We also fit the data with
an additive model as programmed in R.

c) Plot the respective fits. Use function termplot() for the linear models. What do you observe?
Which polynomial degree would you choose? Use mult.fig() and the default plot() function
for the additive model. Compare the additive model plot to the linear model ones. What do you
observe?

d) Now we want to perform model selection on our models. We fix σ as the estimated scale from
the linear fit of degree 5. Then we calculate Mallows’ Cp statistic for all 6 models. Which of the
linear models do we prefer? And which of all the models?

R-Hints:
The skeleton for task 2 can be found on the webpage of the course.

Use the function poly() in the formula when working with lm(), gam() (to fit an additive model)
can be found in the package mgcv. Usage: gam(formula, data). formula must be of the form
logupo3 ~ s(vdht) + s(wdsp) + ...

Make use of summary() to get an overview of your gam() output.

Preliminary discussion: Friday, May 06.

Deadline: Friday, May 13.


