

Diskrete Wa.verteilungen: Eine Zooführung

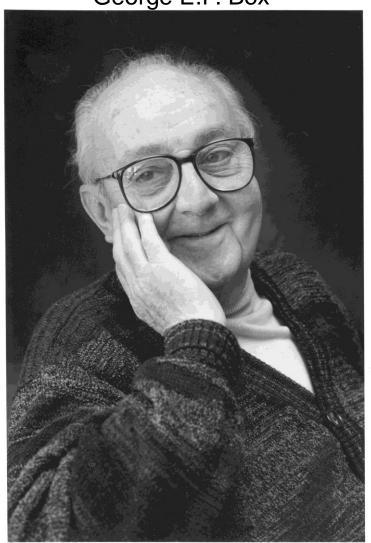
Statistik (Biol./Pharm./HST) - FS 2015

Admin: Übungsbetrieb & Quiz

- Gruppeneinteilung selbstständig via Webseite
- Eine e-mail mit Link für Einschreibung nur nach Belegung dieser Vorlesung in myStudies
- Genau eine e-mail mit personalisiertem Link für Einschreibung
- Link behalten!
- Eine 2. e-mail mit Link für Übungen nur nach Belegung dieser Vorlesung in myStudies
- Genau eine e-mail mit personalisiertem Link für Übungen
- Link behalten!
- Jede Woche erscheinen auf dieser Seite
 - Link zur Eingabe der Online Aufgben
 - Lösungen und Auswertung

Warum Wa.verteilungen?

George E.P. Box



"Essentially, all models are wrong, but some are useful."

"Standard" Wa.verteilungen

Details dieser Verteilungen in Büchern oder Software festgehalten

Viele typische Probleme einfach lösbar

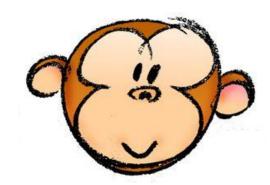
Verteilungs-Zoo: Diskrete Wa.verteilungen

Binomialverteilung

Uniforme Verteilung

Poisson Verteilung

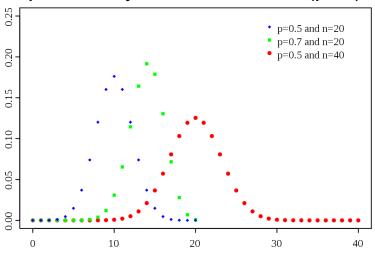
Hypergeometrische Verteilung



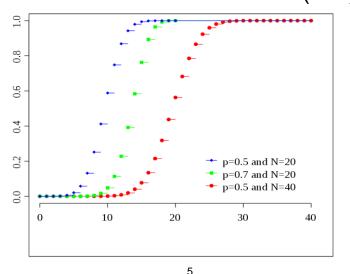
Binomialverteilung

- Situation: Ziehe n Lose an Losbude; gleiche Gewinnwa.
 für alle Lose; Lose unabhängig
- ZV X: Anzahl Gewinne unter n Losen
- X ~ Bin(n, π)
 "X ist binomial verteilt mit Parametern n und π"
- $P(X = x) = \binom{n}{x} \pi^{x} (1 \pi)^{n x}, x \in \{0, 1, ..., n\}$
- $E(X) = n \cdot \pi$, $Var(X) = n \cdot \pi \cdot (1 \pi)$

"probability mass function" (pmf)



"cumulative mass function" (cmf)

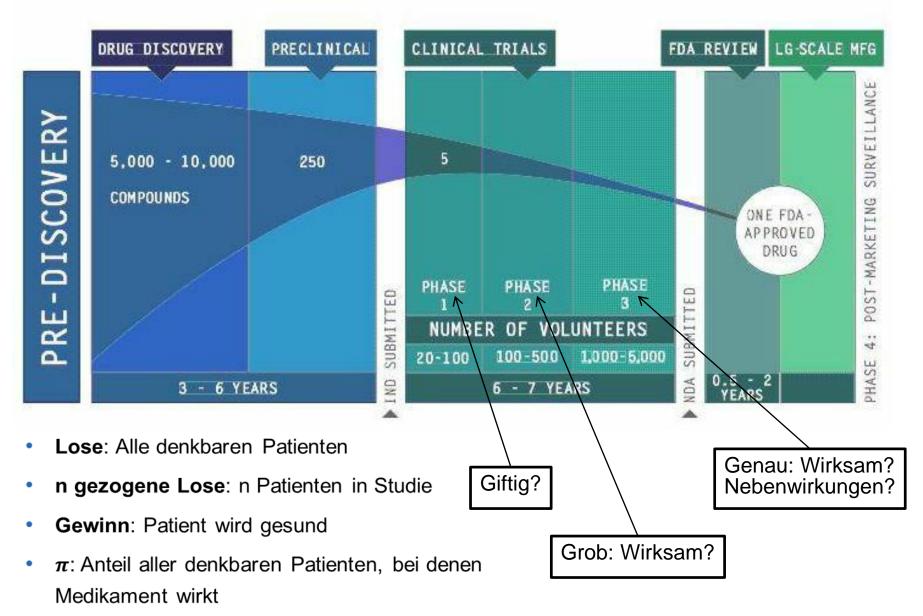


QUIZ: BINOMISLVER+EILUNG

Kampf der Departemente

GEGEBEN: $X \sim Bin(20,0.1)$; WIE GROSS IST P(X=2)?

Beispiel: Klinische Studien



Bsp: Phase 2

- Hersteller behauptet: Neues Medikament wirkt in 80% der Fällen
- In einer Phase 2 Studie mit 100 Patienten werden aber nur 67 gesund
- Ist das plausibel, wenn die Heilungswa. 80% ist?
- X: Anzahl geheilter Patienten
- Falls Hersteller recht hat:

$$X \sim Bin(n = 100, \pi = 0.8)$$

Wie testen wir die Behauptung " $\pi = 0.8$ "?

Versuch 1: P(X = 67) = 0.0008

Sind Sie überzeugt?

Bsp: Phase 2 - Problem

- $X \sim Bin(n = 100, \pi = 0.8)$
- Angenommen, wir haben genau $n \cdot \pi = 80$ Genesungen gesehen; wir sollten dem Hersteller also unbedingt glauben

	n=100	n=1000	n=10'000	n=100'000
$P(X=n\pi)$	0.10	0.03	0.01	0.003

P(X = 67) ist keine gute Kennzahl, weil die Wa. für jede beliebige Zahl klein wird, wenn man nur genug Beobachtungen hat!

	n=100	n=1000	n=10'000	n=100'000
$P(X \leq n\pi)$	0.54	0.51	0.504	0.501

 $P(X \le 67)$ ist eine gute Kennzahl; sie ist, unabhängig von der Stichprobengrösse, leichter zu interpretieren.

Bsp: Phase 2

- Hersteller behauptet: Neues Medikament wirkt in 80% der Fällen
- In einer Phase 2 Studie mit 100 Patienten werden aber nur 67 gesund
- Ist das plausibel, wenn die Heilungswa. 80% ist?
- X: Anzahl geheilter Patienten
- Falls Hersteller recht hat:

$$X \sim Bin(n = 100, \pi = 0.8)$$

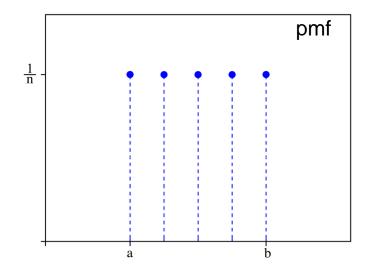
Wie testen wir diese Behauptung?

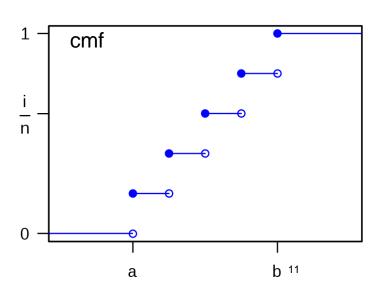
Versuch 2: $P(X \le 67) = 0.001$

→ Beobachtung und Hypothese passen nicht zusammen; vermutlich wirkt das Medikament schlechter als 80%.

Uniforme Verteilung

- Situation: Ziehe eine Zahle aus {1,2,...,n}; alle Zahlen sind gleich wahrscheinlich
- ZV X: Gezogene Zahl
- $X \sim Unif(n)$
 - "X ist uniform verteilt auf den Zahlen 1 bis n"
- $P(X = x) = \frac{1}{n}, x \in \{1, 2, ..., n\}$
- $E(X) = \frac{n+1}{2}, Var(X) = \frac{(n+1)(n-1)}{12}$





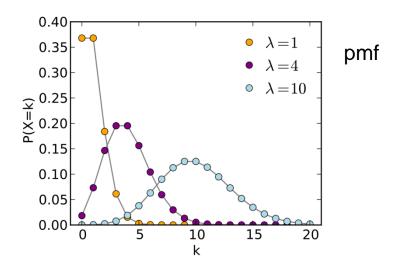
Bsp: Sind Geburtstage uniform verteilt?

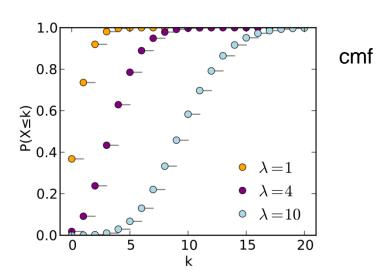
Anteil Geburtstage in 1978 in den USA



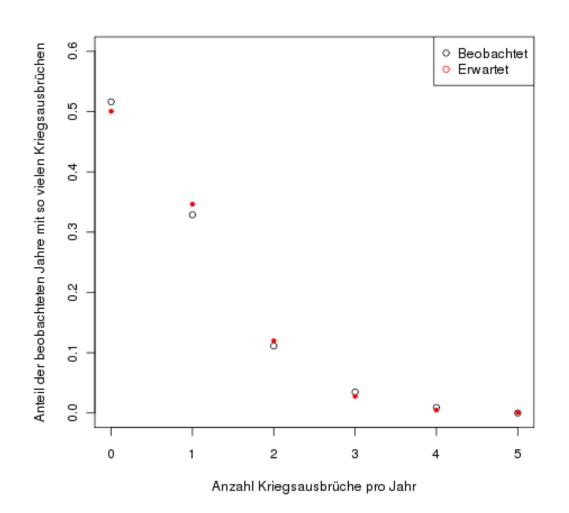
Poisson Verteilung

- Situation: Seltene Ereignisse werden in einem vorgegebenen Zeitraum gezählt
- ZV X: Anzahl beobachteter Ereignisse
- X~Pois(λ)
 'X ist poisson verteilt mit Paramter λ'
- $P(X=x) = \frac{\lambda^x}{x!} \exp(-\lambda)$, $x \in \{0,1,...,\infty\}$
- $E(X) = \lambda, Var(X) = \lambda$





Bsp: Ist die Anzahl Kriege pro Jahr poisson verteilt? (1500-1930, weltweit)

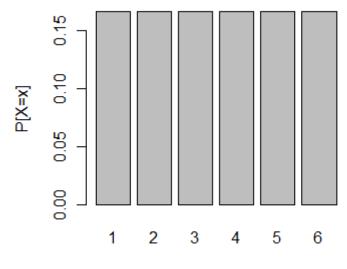


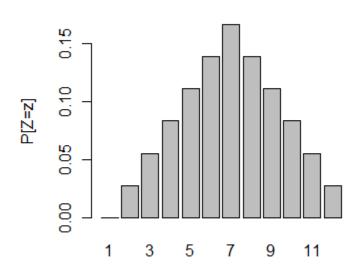
Besonderheit der Poissonverteilung

- Angenommen:
 - $X \sim Pois(\lambda_1), Y \sim Pois(\lambda_2)$
 - X, Y sind unabhängig
- Bilde neue Zufallsvariable: Z = X + Y
- Dann gilt: $Z \sim Pois(\lambda_1 + \lambda_2)$
- Das gilt normalerweise nicht!

Normalerweise: Summe von zwei Verteilungen gibt neue Verteilung

- Bsp: X~Unif({1,2,3,4,5,6}), Y~Unif({1,2,3,4,5,6})
 X, Y sind unabhängig
- Z = X + Y ist nicht uniform verteilt (Augensumme 2 ist selten, Augensumme 7 ist häufig)





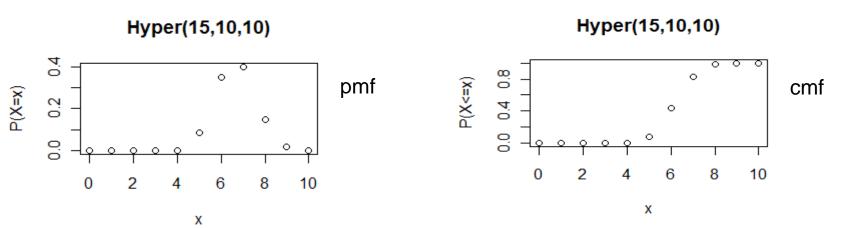
Z

Χ

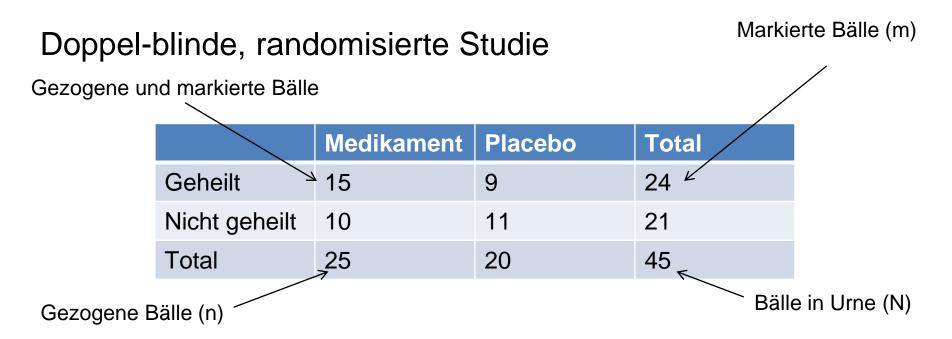
Hypergeometrische Verteilung

- Situation: Urne mit N Kugeln; m sind markiert; ziehen n Kugeln ohne Zurücklegen; wie viele markierte Kugeln?
- ZV X: Anzahl markierter gezogener Kugeln
- $X \sim Hyper(N, n, m)$
- "X ist hypergeometrisch verteilt mit Paramtern N, n und m"

• $E(X) = \frac{(n \cdot m)}{N}$, Var(X) kompliziert; siehe z.B. Wikipedia



Bsp: Phase 3 Studie – Wirksamer als Placebo?



Falls Medikament keine Wirkung hat: Es gibt 24 Personen, bei denen unabhängig von der Gruppenzuteilung fest steht, dass sie gesund werden

Urnenmodell → Hypergeometrische Verteilung

Bsp: Phase 3 Studie – Wirksamer als Placebo?

	Medikament	Placebo	Total
Geheilt	15	9	24
Nicht geheilt	10	11	21
Total	25	20	45

ZV X: Anzahl geheilter Patienten in Medikamenten-Gruppe Falls Medikament keine Wirkung hat:

$$X \sim Hyper(N = 45, m = 24, n = 25)$$

Ist es dann plausibel in der Medikamenten-Gruppe 15 oder mehr geheilte Patienten zu beobachten?

$$P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.76 = 0.24$$
 p-Wert

Falls das Medikament nicht wirkt, ist es durchaus plausibel 15 oder mehr geheilte Patienten in der Medikamentengruppe zu beobachten

19

Momentenmethode, Bsp 1:

- 100 zufällig ausgewählte Patienten bekommen neues Medikament
- 54 werden gesund
- Wie gross ist wohl die Wirkwahrscheinlichkeit in der gesamten Bevölkerung?
- X: Anzahl Patienten, die gesund wurden

$$X \sim Bin(n = 100, \pi = ?)$$

Beobachtung: x = 54

• Momentenmethode um π zu schätzen:

$$E(X) = n \cdot \pi$$
; $E(X) \approx x = 54 \rightarrow x \approx n \cdot \pi \rightarrow \pi \approx \frac{x}{n} = 0.54$

"Erstes Moment"

Momentenmethode, Bsp 2: Capture-Recapture

- Wie gross ist eine Population, von der wir sonst gar nichts weiter wissen?
- Bsp: Ameisen in Ameisenhaufen; Fische in See
- Lincoln-Peterson Methode:
 - Fange m zufällige Tiere, markiere, lasse wieder laufen
 - Fange n zufällige Tiere
 - ZV X: Anzahl markierter Tiere im zweiten Fang
- X~Hyper(N,n,m), wobei N die Grösse der Pop. ist;
 x markierte Tiere im zweiten Fang
- Idee: «Erwartungswert ≈ Beobachtung»

$$-E(X) = \frac{n \cdot m}{N} \approx X \to N \approx \frac{n \cdot m}{X}$$

• Ungenau, aber OK für richtige Grössenordnung

Maximum-Likelihood Methode 1/3

Bsp: n=600 Personen erhalten neues Medikament; x = 30 haben als Nebenwirkung Kopfschmerzen

Wie gross ist der Anteil Personen mit diesen Nebenwirkungen in der Gesamtbevölkerung (>600) ?

Binomialverteilung:

- X: Anzahl Personen mit Kopfschmerzen
- $X \sim Bin(n = 600, \pi)$
- $P(X = 30) = {600 \choose 30} \pi^{30} (1 \pi)^{570}$

Maximum-Likelihood Estimate (MLE) $\hat{\pi}$ für π , ist der Wert, der P(X=30) maximiert.

Maximum-Likelihood Methode 2/3: Computer

Berechne P(X=30) für verschiedene Werte von π mit dem Computer:

π	 0.03	0.04	0.05	0.06	0.07	
P(X=30)	0.002	0.036	0.075	0.042	0.010	

Maximum $\hat{\pi} \approx 0.05$

Maximum-Likelihood Methode 3/3: Analytisch

- $P(X = x) = \binom{n}{x} \pi^x (1 \pi)^{n-x} =: f(\pi)$ "likelihood"
- Analysis: Finde π , sodass $f(\pi)$ maximal ist (s. Skript S.28)
- Ergebnis: $\hat{\pi} = \frac{x}{n} = \frac{30}{600} = 0.05$

Wir erwarten, dass bei etwa 5% der Gesamtbevölkerung Kopfschmerzen als Nebenwirkung auftritt.