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Regression: Line Fitting

y = Xβ + ε

y
X

β
ε

(n × 1)-vector of observations of dependent variable
(n × p)-matrix of observations of independent variables
(one column per variable, first columnt constant)
(p × 1)-vector of parameters
(n × 1)-vector of errors

Goals:

1 Prediction: Accurately predict y for new X
2 Statistical Inference: How confident are we about

the parameter values β?
3 Causal Inference: Can we change y by changing X?

I Careful – need extra assumptions to make causal statements
(e.g. no hidden variables, known causal direction)

I Otherwise: Confounding, Simpson’s Paradox, ...

Christopher Nowzohour Regression Exercise 09.04.2014 2 / 9

http://vudlab.com/simpsons/


Regression: Line Fitting

y = Xβ + ε

y
X

β
ε

(n × 1)-vector of observations of dependent variable
(n × p)-matrix of observations of independent variables
(one column per variable, first columnt constant)
(p × 1)-vector of parameters
(n × 1)-vector of errors

Goals:

1 Prediction: Accurately predict y for new X

2 Statistical Inference: How confident are we about
the parameter values β?

3 Causal Inference: Can we change y by changing X?
I Careful – need extra assumptions to make causal statements

(e.g. no hidden variables, known causal direction)
I Otherwise: Confounding, Simpson’s Paradox, ...

Christopher Nowzohour Regression Exercise 09.04.2014 2 / 9

http://vudlab.com/simpsons/


Regression: Line Fitting

y = Xβ + ε

y
X

β
ε

(n × 1)-vector of observations of dependent variable
(n × p)-matrix of observations of independent variables
(one column per variable, first columnt constant)
(p × 1)-vector of parameters
(n × 1)-vector of errors

Goals:

1 Prediction: Accurately predict y for new X
2 Statistical Inference: How confident are we about

the parameter values β?

3 Causal Inference: Can we change y by changing X?
I Careful – need extra assumptions to make causal statements

(e.g. no hidden variables, known causal direction)
I Otherwise: Confounding, Simpson’s Paradox, ...

Christopher Nowzohour Regression Exercise 09.04.2014 2 / 9

http://vudlab.com/simpsons/


Regression: Line Fitting

y = Xβ + ε

y
X

β
ε

(n × 1)-vector of observations of dependent variable
(n × p)-matrix of observations of independent variables
(one column per variable, first columnt constant)
(p × 1)-vector of parameters
(n × 1)-vector of errors

Goals:

1 Prediction: Accurately predict y for new X
2 Statistical Inference: How confident are we about

the parameter values β?
3 Causal Inference: Can we change y by changing X?

I Careful – need extra assumptions to make causal statements
(e.g. no hidden variables, known causal direction)

I Otherwise: Confounding, Simpson’s Paradox, ...

Christopher Nowzohour Regression Exercise 09.04.2014 2 / 9

http://vudlab.com/simpsons/


Regression: Line Fitting

y = Xβ + ε

y
X

β
ε

(n × 1)-vector of observations of dependent variable
(n × p)-matrix of observations of independent variables
(one column per variable, first columnt constant)
(p × 1)-vector of parameters
(n × 1)-vector of errors

Goals:

1 Prediction: Accurately predict y for new X
2 Statistical Inference: How confident are we about

the parameter values β?
3 Causal Inference: Can we change y by changing X?

I Careful – need extra assumptions to make causal statements
(e.g. no hidden variables, known causal direction)

I Otherwise: Confounding, Simpson’s Paradox, ...

Christopher Nowzohour Regression Exercise 09.04.2014 2 / 9

http://vudlab.com/simpsons/


Regression: Line Fitting

y = Xβ + ε

y
X

β
ε

(n × 1)-vector of observations of dependent variable
(n × p)-matrix of observations of independent variables
(one column per variable, first columnt constant)
(p × 1)-vector of parameters
(n × 1)-vector of errors

Goals:

1 Prediction: Accurately predict y for new X
2 Statistical Inference: How confident are we about

the parameter values β?
3 Causal Inference: Can we change y by changing X?

I Careful – need extra assumptions to make causal statements
(e.g. no hidden variables, known causal direction)

I Otherwise: Confounding, Simpson’s Paradox, ...

Christopher Nowzohour Regression Exercise 09.04.2014 2 / 9

http://vudlab.com/simpsons/


Fitting criteria: three examples
What are “good” parameter estimates β̂?

1 Small squared residuals (L2 regression / least squares):

β̂L2 = arg min
β
‖y − Xβ‖22 = arg min

β

n∑
i=1

(yi − xi · β)2

2 Small absolute residuals (L1 regression / robust regression):

β̂L1 = arg min
β
‖y − Xβ‖1 = arg min

β

n∑
i=1

|yi − xi · β|

3 Maximum likelihood:

β̂ML = arg max
β

n∑
i=1

log fε(yi − xi · β)
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Finding optimal parameters β̂

1 Small squared residuals (L2 regression / least squares):

∇‖y − X β̂L2‖22 = −2XT (y − X β̂L2)
!

= 0

Hence β̂L2 = (XTX )−1XTy

2 Small absolute residuals (L1 regression / robust regression):
I No analytic solution possible :-(
I But numerical optimization works in practice (e.g. gradient descent)

3 Maximum likelihood:
I If ε ∼ Nn(0, σ2In×n), for some σ > 0: β̂ML = β̂L2 !
I In general: can be difficult (→ numerical optimization)
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Typical Assumptions

In descending order of importance:

1 Our sample (X , y) is representative of the population

2 X has full column rank (n ≥ p and no collinear predictors)

3 Unbiased errors: E [εi ] = 0 ∀i
4 Uncorrelated errors: E [εiεj ] = 0 ∀i , j (i 6= j)

5 Exactly measured (but possibly still random) covariates X

6 Constant error variance: E [ε2i ] = σ2 ∀i
7 Jointly Gaussian errors: ε ∼ N

Assumptions 3,4,6,7 are often summarized as ε ∼ Nn(0, σ2In×n)
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Properties of β̂L2

If we have ε ∼ Nn(0, σ2In×n), then the following hold:

1 Unbiasedness: E [β̂L2 ] = β

2 Minimal variance among all unbiased estimators
(Gauss-Markov Theorem)

3 β̂L2 ∼ Np(β, σ2(XTX )−1), and β̂L2 is independent of σ̂2

I t-tests for components of β̂L2 possible
I F -test for the whole of β̂L2 possible
I Confidence interval for E [y0|x0] and prediction interval for y0 possible

(where y0 is a new observation at x0)
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What happens if assumptions fail?

1 Non-representative sample: cannot infer about population
2 XTX non invertible: cannot compute β̂L2

3 Biased errors:
I β̂L2 will be biased
I → Transformations? More predictors?

4 Correlated errors:
I Wrong p-values & confidence intervals
I Estimator less precise (higher variance)
I → Generalized Least Squares

5 Noisy covariates: β̂L2 will be biased
6 Non-constant error variance:

I Estimator less precise (higher variance)
I → Generalized Least Squares, Transformations?

7 Non-normal errors:
I Only weak version of Gauss-Markov Theorem
I β̂L2 is only approximately Gaussian (under weak assumptions on X ),

therefore slightly wrong p-values & confidence intervals
I → Transformations?
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Confidence and Prediction intervals / bands

95%-Confidence band: Area that includes true regression line E [y |x]
with 95% probability.

95%-Prediction band: Area that includes new observations (X , y)
with 95% probability.
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Diagnostic Plots

Tukey-Anscombe Plot: Residuals against fitted values

Check for bias in errors

Check for correlated errors

Check for non-constant error variance

QQ-Plot: Theoretical Gaussian quantiles against empirical quantiles

Check for non-Gaussian errors
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