Regression Exercise

Christopher Nowzohour

09.04.2014

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

y	(n imes 1)-vector of observations of dependent variable
X	$(n \times p)$ -matrix of observations of independent variables
	(one column per variable, first columnt constant)
$oldsymbol{eta}$	$(p \times 1)$ -vector of parameters
ϵ	$(n \times 1)$ -vector of errors

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

у	(n imes 1)-vector of observations of dependent variable
X	$(n \times p)$ -matrix of observations of independent variables
	(one column per variable, first columnt constant)
$oldsymbol{eta}$	$(p \times 1)$ -vector of parameters
ϵ	$(n \times 1)$ -vector of errors

Goals:

 $oldsymbol{0}$ Prediction: Accurately predict $oldsymbol{y}$ for new X

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

y	(n imes 1)-vector of observations of dependent variable
X	$(n \times p)$ -matrix of observations of independent variables
	(one column per variable, first columnt constant)
$oldsymbol{eta}$	(p imes 1)-vector of parameters
ϵ	$(n \times 1)$ -vector of errors

Goals:

- $oldsymbol{0}$ Prediction: Accurately predict $oldsymbol{y}$ for new X
- ② Statistical Inference: How confident are we about the parameter values β ?

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

у	(n imes 1)-vector of observations of dependent variable
X	$(n \times p)$ -matrix of observations of independent variables
	(one column per variable, first columnt constant)
$oldsymbol{eta}$	(ho imes 1)-vector of parameters
ϵ	$(n \times 1)$ -vector of errors

Goals:

- **1** Prediction: Accurately predict \mathbf{y} for new X
- ② Statistical Inference: How confident are we about the parameter values β ?
- **3** Causal Inference: Can we change \mathbf{y} by changing X?

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

у	(n imes 1)-vector of observations of dependent variable
X	$(n \times p)$ -matrix of observations of independent variables
	(one column per variable, first columnt constant)
$oldsymbol{eta}$	$(p \times 1)$ -vector of parameters
ϵ	$(n \times 1)$ -vector of errors

Goals:

- **1** Prediction: Accurately predict \mathbf{y} for new X
- ② Statistical Inference: How confident are we about the parameter values β ?
- **3** Causal Inference: Can we change \mathbf{y} by changing X?
 - Careful need extra assumptions to make causal statements (e.g. no hidden variables, known causal direction)

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

y	(n imes 1)-vector of observations of dependent variable
X	$(n \times p)$ -matrix of observations of independent variables
	(one column per variable, first columnt constant)
$oldsymbol{eta}$	(p imes 1)-vector of parameters
ϵ	$(n \times 1)$ -vector of errors

Goals:

- **1** Prediction: Accurately predict \mathbf{y} for new X
- ② Statistical Inference: How confident are we about the parameter values β ?
- **3** Causal Inference: Can we change \mathbf{y} by changing X?
 - Careful need extra assumptions to make causal statements (e.g. no hidden variables, known causal direction)

► Otherwise: Confounding, Simpson's Paradox, ...

09.04.2014

2 / 9

What are "good" parameter estimates $\widehat{\boldsymbol{\beta}}$?

What are "good" parameter estimates $\widehat{\beta}$?

$$\widehat{\boldsymbol{\beta}}_{L^2} = \mathop{\mathrm{arg\,min}}_{\boldsymbol{\beta}} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 = \mathop{\mathrm{arg\,min}}_{\boldsymbol{\beta}} \sum_{i=1}^n (y_i - \mathbf{x}_i \cdot \boldsymbol{\beta})^2$$

What are "good" parameter estimates $\widehat{\beta}$?

1 Small squared residuals (L^2 regression / least squares):

$$\widehat{\boldsymbol{\beta}}_{L^2} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i=1}^n (y_i - \mathbf{x}_i \cdot \boldsymbol{\beta})^2$$

② Small absolute residuals (L^1 regression / robust regression):

$$\widehat{\boldsymbol{\beta}}_{L^1} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \|\mathbf{y} - \boldsymbol{X}\boldsymbol{\beta}\|_1 = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i=1}^n |y_i - \mathbf{x}_i \cdot \boldsymbol{\beta}|$$

What are "good" parameter estimates $\widehat{\beta}$?

1 Small squared residuals (L^2 regression / least squares):

$$\widehat{\boldsymbol{\beta}}_{L^2} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i=1}^n (y_i - \mathbf{x}_i \cdot \boldsymbol{\beta})^2$$

② Small absolute residuals (L^1 regression / robust regression):

$$\widehat{\boldsymbol{\beta}}_{L^1} = \underset{\boldsymbol{\beta}}{\arg\min} \|\mathbf{y} - X\boldsymbol{\beta}\|_1 = \underset{\boldsymbol{\beta}}{\arg\min} \sum_{i=1}^n |y_i - \mathbf{x}_i \cdot \boldsymbol{\beta}|$$

Maximum likelihood:

$$\widehat{\boldsymbol{\beta}}_{ML} = \arg\max_{\boldsymbol{\beta}} \sum_{i=1}^{n} \log f_{\epsilon}(y_i - \mathbf{x}_i \cdot \boldsymbol{\beta})$$

◆ロト ◆個ト ◆量ト ◆量ト ■ 釣へで

$$\nabla \|\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}\|_2^2 = -2X^T(\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}) \stackrel{!}{=} \mathbf{0}$$

Hence
$$\widehat{\boldsymbol{\beta}}_{L^2} = (X^T X)^{-1} X^T \mathbf{y}$$

1 Small squared residuals (L^2 regression / least squares):

$$\nabla \|\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}\|_2^2 = -2X^T(\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}) \stackrel{!}{=} \mathbf{0}$$

Hence
$$\widehat{\boldsymbol{\beta}}_{L^2} = (X^T X)^{-1} X^T \mathbf{y}$$

2 Small absolute residuals (L^1 regression / robust regression):

$$\nabla \|\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}\|_2^2 = -2X^T(\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}) \stackrel{!}{=} \mathbf{0}$$

Hence
$$\widehat{\boldsymbol{\beta}}_{L^2} = (X^T X)^{-1} X^T \mathbf{y}$$

- **2** Small absolute residuals (L^1 regression / robust regression):
 - ▶ No analytic solution possible :-(
 - ▶ But numerical optimization works in practice (e.g. gradient descent)

$$\nabla \|\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}\|_2^2 = -2X^T(\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}) \stackrel{!}{=} \mathbf{0}$$

Hence
$$\widehat{\boldsymbol{\beta}}_{L^2} = (X^T X)^{-1} X^T \mathbf{y}$$

- **2** Small absolute residuals (L^1 regression / robust regression):
 - ▶ No analytic solution possible :-(
 - ▶ But numerical optimization works in practice (e.g. gradient descent)
- Maximum likelihood:

$$\nabla \|\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}\|_2^2 = -2X^T(\mathbf{y} - X\widehat{\boldsymbol{\beta}}_{L^2}) \stackrel{!}{=} \mathbf{0}$$

Hence
$$\widehat{\boldsymbol{\beta}}_{L^2} = (X^T X)^{-1} X^T \mathbf{y}$$

- **2** Small absolute residuals (L^1 regression / robust regression):
 - ▶ No analytic solution possible :-(
 - ▶ But numerical optimization works in practice (e.g. gradient descent)
- Maximum likelihood:
 - ▶ If $\epsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 I_{n \times n})$, for some $\sigma > 0$: $\widehat{\boldsymbol{\beta}}_{ML} = \widehat{\boldsymbol{\beta}}_{L^2}$!
 - ▶ In general: can be difficult (→ numerical optimization)

In descending order of importance:

• Our sample (X, y) is representative of the population

- **1** Our sample (X, y) is representative of the population
- ② X has full column rank ($n \ge p$ and no collinear predictors)

- **1** Our sample (X, y) is representative of the population
- ② X has full column rank $(n \ge p \text{ and no collinear predictors})$
- **3** Unbiased errors: $E[\epsilon_i] = 0 \quad \forall i$

- **1** Our sample (X, y) is representative of the population
- ② X has full column rank $(n \ge p \text{ and no collinear predictors})$
- **3** Unbiased errors: $E[\epsilon_i] = 0 \quad \forall i$
- Uncorrelated errors: $E[\epsilon_i \epsilon_j] = 0 \quad \forall i, j \ (i \neq j)$

- \bullet Our sample (X, y) is representative of the population
- ② X has full column rank ($n \ge p$ and no collinear predictors)
- **3** Unbiased errors: $E[\epsilon_i] = 0 \quad \forall i$
- Uncorrelated errors: $E[\epsilon_i \epsilon_j] = 0 \quad \forall i, j \ (i \neq j)$
- lacktriangle Exactly measured (but possibly still random) covariates X

- \bullet Our sample (X, y) is representative of the population
- ② X has full column rank $(n \ge p \text{ and no collinear predictors})$
- **3** Unbiased errors: $E[\epsilon_i] = 0 \quad \forall i$
- Uncorrelated errors: $E[\epsilon_i \epsilon_j] = 0 \quad \forall i, j \ (i \neq j)$
- lacktriangle Exactly measured (but possibly still random) covariates X
- **o** Constant error variance: $E[\epsilon_i^2] = \sigma^2 \quad \forall i$

In descending order of importance:

- **1** Our sample (X, y) is representative of the population
- ② X has full column rank $(n \ge p \text{ and no collinear predictors})$
- **3** Unbiased errors: $E[\epsilon_i] = 0 \quad \forall i$
- Uncorrelated errors: $E[\epsilon_i \epsilon_j] = 0 \quad \forall i, j \ (i \neq j)$
- lacktriangle Exactly measured (but possibly still random) covariates X
- **o** Constant error variance: $E[\epsilon_i^2] = \sigma^2 \quad \forall i$
- $m{0}$ Jointly Gaussian errors: $m{\epsilon} \sim \mathcal{N}$

5 / 9

In descending order of importance:

- **1** Our sample (X, y) is representative of the population
- ② X has full column rank $(n \ge p \text{ and no collinear predictors})$
- **3** Unbiased errors: $E[\epsilon_i] = 0 \quad \forall i$
- Uncorrelated errors: $E[\epsilon_i \epsilon_j] = 0 \quad \forall i, j \ (i \neq j)$
- lacktriangle Exactly measured (but possibly still random) covariates X
- **o** Constant error variance: $E[\epsilon_i^2] = \sigma^2 \quad \forall i$
- **0** Jointly Gaussian errors: $oldsymbol{\epsilon} \sim \mathcal{N}$

Assumptions 3,4,6,7 are often summarized as $\epsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 I_{n \times n})$

If we have $\epsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 I_{n \times n})$, then the following hold:

If we have $\epsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 I_{n \times n})$, then the following hold:

• Unbiasedness: $E[\widehat{\boldsymbol{\beta}}_{L^2}] = \boldsymbol{\beta}$

If we have $\epsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 I_{n \times n})$, then the following hold:

- **1** Unbiasedness: $E[\widehat{m{\beta}}_{L^2}] = m{\beta}$
- Minimal variance among all unbiased estimators (Gauss-Markov Theorem)

If we have $\epsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 I_{n \times n})$, then the following hold:

- Unbiasedness: $E[\widehat{\boldsymbol{\beta}}_{L^2}] = \boldsymbol{\beta}$
- Minimal variance among all unbiased estimators (Gauss-Markov Theorem)
- $\ \, \widehat{\boldsymbol{\beta}}_{L^2} \sim \mathcal{N}_p(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}), \text{ and } \widehat{\boldsymbol{\beta}}_{L^2} \text{ is independent of } \widehat{\sigma}^2$
 - t-tests for components of $\widehat{\boldsymbol{\beta}}_{L^2}$ possible
 - *F*-test for the whole of $\widehat{\beta}_{L^2}$ possible
 - Confidence interval for $E[y_0|\mathbf{x}_0]$ and prediction interval for y_0 possible (where y_0 is a new observation at \mathbf{x}_0)

Non-representative sample: cannot infer about population

- Non-representative sample: cannot infer about population
- ② X^TX non invertible: cannot compute $\widehat{\boldsymbol{\beta}}_{L^2}$

- Non-representative sample: cannot infer about population
- ② X^TX non invertible: cannot compute $\widehat{\boldsymbol{\beta}}_{L^2}$
- Biased errors:
 - $\triangleright \hat{\beta}_{L^2}$ will be biased
 - $\blacktriangleright \ \to \mbox{Transformations? More predictors?}$

- Non-representative sample: cannot infer about population
- ② X^TX non invertible: cannot compute $\widehat{\boldsymbol{\beta}}_{L^2}$
- Biased errors:
 - $\triangleright \beta_{L^2}$ will be biased
 - ightharpoonup Transformations? More predictors?
- Correlated errors:
 - Wrong p-values & confidence intervals
 - Estimator less precise (higher variance)
 - ightharpoonup ightharpoonup Generalized Least Squares

- Non-representative sample: cannot infer about population
- ② X^TX non invertible: cannot compute $\widehat{\beta}_{L^2}$
- Biased errors:
 - $\triangleright \hat{\beta}_{L^2}$ will be biased
 - lacktriangledown Transformations? More predictors?
- Correlated errors:
 - Wrong p-values & confidence intervals
 - Estimator less precise (higher variance)
 - ightharpoonup ightharpoonup Generalized Least Squares
- **1** Noisy covariates: $\widehat{\boldsymbol{\beta}}_{L^2}$ will be biased

What happens if assumptions fail?

- Non-representative sample: cannot infer about population
- ② X^TX non invertible: cannot compute $\widehat{\beta}_{L^2}$
- Biased errors:
 - $\triangleright \widehat{\beta}_{I^2}$ will be biased
 - ightharpoonup Transformations? More predictors?
- Correlated errors:
 - Wrong p-values & confidence intervals
 - Estimator less precise (higher variance)
 - ightharpoonup ightharpoonup Generalized Least Squares
- **1** Noisy covariates: $\widehat{\boldsymbol{\beta}}_{L^2}$ will be biased
- Non-constant error variance:
 - Estimator less precise (higher variance)
 - ► → Generalized Least Squares, Transformations?

What happens if assumptions fail?

- Non-representative sample: cannot infer about population
- ② X^TX non invertible: cannot compute $\widehat{\boldsymbol{\beta}}_{L^2}$
- Biased errors:
 - $\triangleright \hat{\beta}_{L^2}$ will be biased
 - ► → Transformations? More predictors?
- Correlated errors:
 - Wrong p-values & confidence intervals
 - Estimator less precise (higher variance)
 - ▶ → Generalized Least Squares
- **1** Noisy covariates: $\widehat{\beta}_{L^2}$ will be biased
- Non-constant error variance:
 - Estimator less precise (higher variance)
 - $\blacktriangleright \ \to \ \mathsf{Generalized} \ \mathsf{Least} \ \mathsf{Squares}, \ \mathsf{Transformations}?$
- Non-normal errors:
 - Only weak version of Gauss-Markov Theorem
 - $\widehat{\beta}_{L^2}$ is only approximately Gaussian (under weak assumptions on X), therefore slightly wrong p-values & confidence intervals
 - ▶ → Transformations?

95%-Confidence band: Area that includes true regression line $E[y|\mathbf{x}]$ with 95% probability.

95%-Confidence band: Area that includes true regression line $E[y|\mathbf{x}]$ with 95% probability.

95%-Prediction band: Area that includes new observations (X, \mathbf{y}) with 95% probability.

95%-Confidence band: Area that includes true regression line $E[y|\mathbf{x}]$ with 95% probability.

95%-Prediction band: Area that includes new observations (X, \mathbf{y}) with 95% probability.

09.04.2014

Tukey-Anscombe Plot: Residuals against fitted values

Tukey-Anscombe Plot: Residuals against fitted values

Check for bias in errors

Tukey-Anscombe Plot: Residuals against fitted values

- Check for bias in errors
- Check for correlated errors

Tukey-Anscombe Plot: Residuals against fitted values

- Check for bias in errors
- Check for correlated errors
- Check for non-constant error variance

QQ-Plot: Theoretical Gaussian quantiles against empirical quantiles

Tukey-Anscombe Plot: Residuals against fitted values

- Check for bias in errors
- Check for correlated errors
- Check for non-constant error variance

QQ-Plot: Theoretical Gaussian quantiles against empirical quantiles

Check for non-Gaussian errors