
Dr. M. Dettling Applied Time Series Analysis SS 2014

Solution to Series 6

1. a) > r.bel.lm <- lm(NURSING ∼ ., data=beluga)
> summary(r.bel.lm)

Call:

lm(formula = NURSING ~ ., data = d.beluga)

Residuals:

Min 1Q Median 3Q Max

-4.44568 -0.90180 -0.08505 1.09525 3.95477

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5602842 0.5502170 1.018 0.31012

PERIOD 0.0001998 0.0031937 0.063 0.95020

BOUTS 0.8784967 0.3336237 2.633 0.00932 **

LOCKONS 2.3903512 0.2035042 11.746 < 2e-16 ***

DAYNIGHT -0.3416237 0.2510156 -1.361 0.17550

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.582 on 155 degrees of freedom

Multiple R-Squared: 0.842, Adjusted R-squared: 0.8379

F-statistic: 206.5 on 4 and 155 DF, p-value: < 2.2e-16

> d.resid <- ts(resid(r.bel.lm))

> plot(d.resid)

> acf(d.resid, lag=40)

> pacf(d.resid, lag=40)
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The correlogram of the residuals shows that significant correlation is present. Consequently, all
confidence intervals and tests in the output of lm can be wildly inaccurate. It is thus impossible
for zoologists to conclude which explanatory variables are needed in the model.

b) Due to the partial autocorrelations present, an AR(2) model for the residuals makes sense. Note
that the ordinary autocorrelations make up a dampened sine curve, a property typical of AR
processes. We can use the Burg algorithm to estimate both AR parameters:

> r.burg <- ar(d.resid, method="burg", order.max=2, aic=F)

> str(r.burg)

in R, we obtain:

α1 = 0.284, α2 = 0.321.
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Note: We can also use the AIC plot to determine the order of the process:
> r.aic <- ar(d.resid, method="burg")$aic

> plot(0:(length(r.aic)-1), r.aic, xlab="Order", type="b")
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It seems that p = 2 is a good order to take.

c) We have

Yt = β0 + β1 · t+ β2X2,t + β3X3,t + β4X4,t + Et (t = 1, . . . , 160)

with Et = α1Et−1 + α2Et−2 + Ut Ut i.i.d. , E[Ut] = 0, Var[Ut] = σ2 ,

where Yt = NURSING, X1,t = t = PERIOD, X2,t = BOUTS, X3,t = LOCKONS and X4,t = DAYNIGHT.
Computing Y ∗

t = Yt − α1Yt−1 − α2Yt−2:

Y ∗
t = Yt − α1Yt−1 − α2Yt−2

= β0 + β1 · t+ β2X2,t + β3X3,t + β4X4,t + Et

−α1

(
β0 + β1 · (t− 1) + β2X2,t−1 + β3X3,t−1 + β4X4,t−1 + Et−1

)
−α2

(
β0 + β1 · (t− 2) + β2X2,t−2 + β3X3,t−2 + β4X4,t−2 + Et−2

)
= β0(1 − α1 − α2) + β1(t− α1(t− 1) − α2(t− 2))

+β2(X2,t − α1X2,t−1 − α2X2,t−2) + . . .+ Et − α1Et−1 − α2Et−2

= β∗
o + β1X

∗
1,t + β2X

∗
2,t + β3X

∗
3,t + β4X

∗
4,t + Ut

The explanatory variables and the target must all be transformed as follows:

x∗t = xt − α̂1xt−1 − α̂2xt−2 = xt − 0.284 · xt−1 − 0.321 · xt−2

d) (*) The transformation, and the subsequent normal regression, can be performed in R using the
following code. Note that the residuals now no longer exhibit correlation.
> t.ar <- r.burg$ar

> ## Transform the entire multivariate time series

> d.beluga.tr <- d.beluga - t.ar[1]*lag(d.beluga,-1) - t.ar[2]*lag(d.beluga,-2)

> ## Set new (meaningful) colnames

> colnames(d.beluga.tr) <- paste(colnames(d.beluga),".tr",sep="")

[1] "PERIOD.tr" "BOUTS.tr" "NURSING.tr" "LOCKONS.tr" "DAYNIGHT.tr"

> t.intercept <- rep((1-t.ar[1]-t.ar[2]),nrow(d.beluga.tr))

> r.lm.tr <- lm(NURSING.tr ~ -1 + t.intercept + PERIOD.tr + BOUTS.tr +

+ LOCKONS.tr + DAYNIGHT.tr, data=d.beluga.tr)

> plot(r.lm.tr$resid)

> acf(r.lm.tr$resid)

> pacf(r.lm.tr$resid)

e) The procedure gls() can be used for much more general models than those you have already
seen. The argument correlation can be used for specifying the correlation structure of the
residuals. In principle an AR(p) model is merely a special case of the ARMA(p, q) model taking
q = 0. This explains the overly complex expression corARMA(value=c(...,...), p=2, q=0,

fixed=F). The AR coefficients computed in Part b) can be used as starting values by specifying
them in the argument value. Errors in different time periods can be specified as being correlated
by means of the argument form= ∼ PERIOD of corARMA. This is necessary, as the entries in the
data matrix can be arranged in any way.

R-output from summary(r.bel.gls):
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Generalized least squares fit by maximum likelihood

Model: NURSING ~ BOUTS + LOCKONS + DAYNIGHT + PERIOD

Data: d.beluga

AIC BIC logLik

560.396 584.9974 -272.198

Correlation Structure: ARMA(2,0)

Formula: ~PERIOD

Parameter estimate(s):

Phi1 Phi2

0.2739964 0.3653668

Coefficients:

Value Std.Error t-value p-value

(Intercept) 1.3218871 0.7678364 1.721574 0.0871

BOUTS 0.2961684 0.3370588 0.878685 0.3809

LOCKONS 2.5681923 0.1964012 13.076257 <.0001

DAYNIGHT -0.3080293 0.1549160 -1.988363 0.0485

PERIOD 0.0024982 0.0062754 0.398090 0.6911

Correlation:

(Intr) BOUTS LOCKON DAYNIG

BOUTS -0.303

LOCKONS -0.101 -0.811

DAYNIGHT -0.014 -0.135 0.067

PERIOD -0.607 -0.233 0.251 0.024

Standardized residuals:

Min Q1 Med Q3 Max

-2.80055625 -0.58763749 0.01738824 0.65602061 2.49854120

Residual standard error: 1.577031

Degrees of freedom: 160 total; 155 residual

These coefficient estimates differ markedly from those in Part a). We obtain α1 = 0.274 and
α2 = 0.365, which can be found in the above R output at Parameter estimate(s) (here labelled
as Phi1 and Phi2). In particular note that the standard errors of the explanatory variables
sometimes differ greatly from those in the regression model.
Residual analysis:
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There are only small differences to the model using ordinary regression. This is because resid-
uals denote the difference between observations and model-derived fitted values – and the least
squares estimates of coefficients do make sense here. It is merely the standard errors of the least
squares method that are wrong. The residuals form an AR(2) process; thus the chosen correlation
structure is correct.

f) Successively eliminating redundant variables (PERIOD, BOUTS and then DAYNIGHT) reduces the
model.
R output from summary(r.red.bel.gls):
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Generalized least squares fit by maximum likelihood

Model: NURSING ~ LOCKONS

Data: d.beluga

AIC BIC logLik

559.1555 574.5314 -274.5778

Correlation Structure: ARMA(2,0)

Formula: ~PERIOD

Parameter estimate(s):

Phi1 Phi2

0.2803981 0.3696418

Coefficients:

Value Std.Error t-value p-value

(Intercept) 1.778230 0.5048868 3.522037 6e-04

LOCKONS 2.682246 0.1147227 23.380250 <.0001

Correlation:

(Intr)

LOCKONS -0.804

Standardized residuals:

Min Q1 Med Q3 Max

-3.01255719 -0.57430640 0.05979804 0.69560485 2.59582932

Residual standard error: 1.614887

Degrees of freedom: 160 total; 158 residual

Note:
As you are not using an ordinary lm object, you cannot use the function step(). You will need
to eliminate variables individually until all remaining variables are significant.
The analysis of residuals does not show any breach of the assumptions on errors, i.e. the residuals
do still constitute an AR(2) process as assumed in the construction of the model. The fitted line
is given in the last plot.
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R commands for these plots:
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> plot(ts(resid(r.red.bel.gls)))

> acf(ts(resid(r.red.bel.gls)))

> pacf(ts(resid(r.red.bel.gls)))

and
> plot(d.beluga[,4], d.beluga[,3], xlab="LOCKONS", ylab="NURSING")

> abline(r.red.bel.gls)

2. a) In the time series plot, the dependence of the two series is evident. When advertising expenditure
increases (ADVERT), so do sales (SALES) (or vice versa?).
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R commands to create such a plot:
> plot(d.advert$ADVERT, ylim=c(0,4000), ylab="")

> lines(d.advert$SALES, lty=2)

> legend(0, 4000, c("SALES","ADVERT"), lty=c(2,1))

b) We regard the model

SALESt = β0 + β1 ADVERTt + β2 ADVERTt−1 + Et .

R commands and output:
> r.lm1 <- lm(SALES ∼ ADVERT + ADVERT1, data=d.advert.ts)
> summary(r.lm1)

Call:

lm(formula = SALES ~ ADVERT + ADVERT1, data = d.advert.ts)

Residuals:

Min 1Q Median 3Q Max

-877.94 -224.37 -18.10 211.06 593.62

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 496.68768 135.76609 3.658 0.00061 ***

ADVERT 1.35243 0.22704 5.957 2.55e-07 ***

ADVERT1 0.08066 0.22753 0.355 0.72445

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 346.3 on 50 degrees of freedom

Multiple R-Squared: 0.7081, Adjusted R-squared: 0.6965

F-statistic: 60.66 on 2 and 50 DF, p-value: 4.263e-14

> r.res1 <- ts(resid(r.lm1), start=1908)

> plot(r.res1, type="l")

> acf(r.res1, lag=13)
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> pacf(r.res1, lag=13)
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The time series plot of residuals, and the corresponding correlograms, show that the errors are
correlated and behave as an AR(1) process.

Consequences:
Correlation of residuals means that subsequently, the confidence intervals for coefficients β0, β1
and β2 are inaccurate, which has an adverse effect on predictions and their precision. Since the
setup of this exercise means that prediction is our main interest, this model really should be
improved first.

c) We extend the model from part b) by introducing the following variables SALESt−1 = SALES1:

SALESt = β0 + β1 ADVERTt + β2 ADVERTt−1 + β3 SALESt−1 + Et .

Note that the variable SALES serves both as a target and as an explanatory variable.

R commands and output:
> r.lm2 <- lm(SALES ∼., data=d.advert.ts)
> summary(r.lm2)

Call:

lm(formula = SALES ~ ., data = d.advert.ts)

Residuals:

Min 1Q Median 3Q Max

-477.94 -97.66 -25.39 73.64 690.21

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 154.06533 80.49015 1.914 0.061458 .

ADVERT 0.58944 0.14232 4.142 0.000136 ***

SALES1 0.95546 0.08764 10.902 1.07e-14 ***

ADVERT1 -0.66006 0.14156 -4.663 2.43e-05 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 189 on 49 degrees of freedom

Multiple R-Squared: 0.9148, Adjusted R-squared: 0.9096

F-statistic: 175.4 on 3 and 49 DF, p-value: 0

> r.res2 <- ts(resid(r.lm2), start=1908)

> plot(r.res2)

> acf(r.res2)

> pacf(r.res2)
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The plot of residuals - and moreover, the correlograms - no longer exhibit unwanted correlation.

By including the additional variable SALESt−1, we have succeeded in eliminating the autocorre-
lation of residuals from the model in b).

Checking the assumption on the distribution of residuals:
> plot(fitted(r.lm2), resid(r.lm2))

> qqnorm(resid(r.lm2))
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In the time series plot of residuals, and in the normal and Tukey-Anscombe plots, however, 2
outliers are visible. These observations should be looked at more closely. Simply omitting them
is not an option, since this obviously causes problems for a time series. (Simply omitting outliers
is a bad habit anyway.)

d) We regard the model
D SALESt = β0 + β1 D ADVERTt + Et ,

where D SALESt = SALESt − SALESt−1 and D ADVERTt = ADVERTt − ADVERTt−1 are the first-order
differences. The fitted line is shown in the following plot:
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R commands and output:
> r.lm3 <- lm(d.dsales ∼ d.dadvert)
> summary(r.lm3)

Call:

lm(formula = d.dsales ~ d.dadvert)

Residuals:

Min 1Q Median 3Q Max

-614.56 -81.46 -11.79 82.11 730.98

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.6685 26.4415 0.214 0.831

d.dadvert 0.6234 0.1206 5.168 3.98e-06 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 192.5 on 51 degrees of freedom

Multiple R-Squared: 0.3437, Adjusted R-squared: 0.3308

F-statistic: 26.7 on 1 and 51 DF, p-value: 3.982e-06

R commands for plotting the fitted line:
> plot(d.dadvert, d.dsales); abline(r.lm3)

Analysis of residuals:
> r.res3 <- ts(resid(r.lm3), start=1908)

> f.acf(r.res3)
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> plot(fitted(r.lm3), resid(r.lm3))

> qqnorm(resid(r.lm3))
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The correlograms do not exhibit any undesired correlation. All the ordinary and partial autocor-
relations lie inside the confidence band.

However, the time series plot of residuals and the normal and Tukey-Anscombe plots again contain
2 outliers. The fitted model is

D SALESt = 5.668 + 0.623 · D ADVERTt + Et .

The intercept β̂0 = 5.668 is not significant and could possibly be removed from the model.

e) Comparison of both models:

c) SALESt = β0 + β1 ADVERTt + β2 ADVERTt−1 + β3 SALESt−1 + Et

d) D SALESt = β0 + β1 D ADVERTt + Et corresponds to the model
SALESt = β0 + β1 ADVERTt − β1 ADVERTt−1 + SALESt−1 + Et

• In both models the errors satisfy the assumption of independence. However, both models
breach the assumption on their distribution, and there are outliers.

• Both models contain the same explanatory variables, but the model in part d) contains re-
strictions on the regression coefficients (only 2 coefficients are estimated here!).

• The second model is somewhat simpler to interpret than the first one. However, model d)
does not fit as well as model c): its R2 is only 0.344 compared to R2 = 0.915 in model c).
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Notes — Outlook:
In this example it is difficult to determine which series influences the other one. The theory distin-
guishes two settings:

• Both series influence each other. Such models are called bivariate autoregressive models.

• Only one of the series (yt) depends on the other one (xt). Such models are termed transfer
function models.

The connection between the two time series can be investigated using so-called cross-correlations,
which you will encounter later. In both cases, however, both yt and xt must be assumed to be
stationary time series.


