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Solution to Series 4

1. a) Plots of the two time series:

> par(mfrow = c(2, 1), mar = c(0.5, 3, 2, 0), oma = c(2, 0, 0, 0),

cex = 0.66, mgp = c(1.5, 0.6, 0))

> plot(ts1, xlab = "", xaxt = "n")

> axis(1, at = (0:5)*20, labels = rep(NA, 6))

> plot(ts2)
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The first time series, ts1, is actually simulated from a stationary AR(2) process with coefficients
α1 = 0.5 and α2 = −0.2, shifted by the constant amount 7. (Strictly speaking, stationarity of
an AR(p) process demands that the mean be 0 throughout, which is not the case due to the shift.
However, we can subtract the estimated mean and then still call it a stationary process, since constant
vertical shifts do not affect the structure or dependencies involved in a time series.)
When looking at the plot, the stationarity of this process is nicely evident in the“identical behaviour”
over 100 points in time: we see neither trend nor periodicity.
The second time series is also simulated from a stationary (!) AR(4) process with coefficients
α1 = 0.5, α2 = 0.5, α3 = −0.4 and α4 = 0.3.
When looking at this plot, the stationarity shows up in rather unaccustomed way. It looks as if there
is a nonlinear trend in the time series; thus even a stationary time series need not act quite as nicely
as we would hope it to.
As we know the generating coefficients αi for the two processes (which is not the case in reality) we
can here proof the stationarity of the AR(p) process using the unit root test:

> t.ar1 <- c(0.5, -0.2)

> abs(polyroot(c(1, -t.ar1)))

[1] 2.236068 2.236068

> t.ar2 <- c(0.5, 0.5, -0.4, 0.3)

> abs(polyroot(c(1, -t.ar2)))

[1] 1.063564 1.092643 1.693630 1.693630

The absolute values of the complex roots of the polynomials 1 −
∑p

i=1 αiz
i are larger than 1, as

required for stationarity.
Nevertheless for the second time series the absolute values of the complex roots are close to 1 and
only exceed it by little. Therefore, the process is very close to non-stationarity (although it still is a
stationary process).
In summary, we see that it is very difficult to recognize stationarity from a mere glance at a time
series.
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b) First time series:

> acf(ts1)

> pacf(ts1)
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The autocorrelations at lags 1 and 3 do seem to differ from zero; apart from this, a dampened sine
wave seems to fit the autocorrelations at least plausibly well. As expected (when the model is known),
the partial autocorrelations at lags 1 and 2 show significant deviations from zero, indicating that we
should fit an AR(2) model. However, since the PACF at lag 7 is also slightly significant, an AR(7)
would perhaps be more appropriate. In this case we would try to fit an AR(2) model first and analyse
the residuals. If those still show some dependencies, it then would be natural to try fitting an AR(7)
model.

Second time series:

> acf(ts2)

> pacf(ts2)
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Lags up to 12 all have positive autocorrelations, as evidenced by the series tending to stay where it
already is for longer than e.g. ts1. However, its decay is not exponential, but much slower.

The partial autocorrelations at lags 1 to 4 are significant, which fits the actual model AR(4). All
subsequent autocorrelations are much smaller.

2. a) The time series looks stationary:

> plot(ts.sim, ylab = "")
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b) > abs(polyroot(c(1, - ar.coef)))

[1] 1.170785 1.193125 1.193125

Indeed, all roots lie outside the unit circle, so the AR process is stationary.

c) > acf(ts.sim, plot=TRUE)

> acf(ts.sim, type="partial", plot=TRUE)
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With the exception of lag 7, its autocorrelations decay rapidly. The partial autocorrelations are
significant at lags 1 and 3, indicating an AR model of order at least 3. Subsequent lags are insignificant,
although lags 10, 11 and 12 are noticeable.

> autocorr <- ARMAacf(ar=c(0.5, -0.4, 0.6), lag.max=20)

> plot(0:20, autocorr, type="h", xlab="Lag", ylab="true autocorr")

> acf(ts.sim, plot=T)
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d) Time series of length 30:

> ts.sim2 <- arima.sim(list(ar = ar.coef), n = 30)

> plot(0:20, autocorr, type="h", xlab="Lag", ylab="true autocorr")

> acf(ts.sim2, plot=T, lag.max=20)
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Time series of length 1000:

> ts.sim3 <- arima.sim(list(ar = ar.coef), n = 1000)

> plot(0:20, autocorr, type="h", xlab="Lag", ylab="true autocorr")

> acf(ts.sim3, plot=T, lag.max=20)
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It is visible that the estimated autocorrelations get more precise the longer the time series is.

3. a) Plotting and calculating the mean:

> mu <- mean(t.yields)

> plot(t.yields)

> abline(h = mu, lty=3)
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We can regard this time series as being stationary.

b) Plotting the ACF:

> acf(t.yields, plot = TRUE)

0 5 10 15

−
0.

4
0.

4
1.

0

Lag

A
C

F

The correlogram shows us that for lags k ≥ 3, the estimated autocorrelations ρ̂〈k 〉 do not differ
significantly from 0. The first of these autocorrelations is negative; as the time series oscillates very
noticeably, this negativity is not at all surprising.

Looking at lagged scatterplots:

> lag.plot(t.yields, lag = 6, layout = c(2, 3), do.lines = FALSE)
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In the lagged scatterplot with lag 1 the pairs [xt, xt+1] show the negative linear relationship we
expected from the correlogram. For lag 2, however, the lagged scatterplot shows up a positive linear
relationship, and for lag k ≥ 4 we see no further correlation. The pairs [xt, xt+3] (lagged scatterplot
at lag 3) still have a slightly negative connection, but the correlogram tells us that we can assume
ρ̂〈3〉 = 0.

c) The variance of the arithmetic mean µ̂ is

Var(µ̂) =
1

n2
γ(0)

(
n+ 2

n−1∑
k=1

(n− k) ρ(k)

)
.

From the correlogram in Part b) we see that the estimated autocorrelations ρ̂〈k 〉 do not differ
significantly from 0 for lags k ≥ 3. Thus we can set all the autocorrelations ρ(k) for k ≥ 3 to 0. We
obtain

Var(µ̂) =
1

n2
γ(0)

(
n+ 2(n− 1)ρ(1) + 2(n− 2)ρ(2)

)
.

To estimate the variance of µ̂, we replace γ(0), ρ(1) and ρ(2) by their estimates.

R code:
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> n <- length(t.yields)

> gamma0 <- var(t.yields) * (n - 1)/n

> rho <- acf(t.yields, plot=F)$acf

> Var.mu <- n^(-2) * gamma0 * (n + 2*sum((n - 1:2)*rho[2:3]))

This yields an estimated variance of V̂ar(µ̂) = 1.643.

The bounds of an approximate 95% confidence interval for the mean yield are then given by

µ̂± 1.96 · se(µ̂) = µ̂± 1.96 ·
√
V̂ar(µ̂) .

In our case, we get a confidence interval of [48.62, 53.64].

If we assume independence, the variance of µ̂ is estimated as

V̂ar(µ̂) =
1

n2

n∑
s=1

V̂ar(Xs) =
γ̂(0)

n
= 1.997 .

Under this independence assumption, therefore, an approximate 95% confidence interval for the mean
yield is given by

[µ̂− 1.96 · se(µ̂), µ̂+ 1.96 · se(µ̂)] = [48.36, 53.90] .

Thus the correct specification of the independence structure here leads to a confidence interval which
is 10% narrower.

d) Only the first partial autocorrelation is significantly different from zero. Thus we can assume that our
time series is an AR(1) process.
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e) For an AR(1) model, the Yule-Walker equations simplify to

ρ̂(1) = α̂ · ρ̂(0), ρ̂(0) = 1

σ2 can be estimated by σ̂2 = σ̂2
X · (1− α̂2). Here, we get α̂ = ρ̂(1) = −0.390 and σ̂2 = 120.266.

Determining parameters with the help of R:

> r.yw <- ar(t.yields, method = "yw", order.max = 1)

> r.yw$ar

[1] -0.3898783

> r.yw$var.pred

[1] 122.0345


