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Applied Time Series Analysis SS 2014

Solution to Series 10

i) X; =t+ E; is not stationary, since the expected value E[X;| = E[t + E;] =t is not constant.
ii) For the series Y; = X; — X;_; holds

Vi =Xy - Xy 1 =t+E—-(t-1+E_1)=1+E—-E_1,

this means Y; is an M A(1)-process with p =1 and §; = —1, that is stationary.
iii) The series Z; = X; — t is stationary, since Z;, = X; —t=t+ E; —t = E} .
Series Y;: We can calculate the autocovariances:

Y11(k)

Cov(Y:,Yiqr) = Cov(l+ By — By 1,1 + By — Eryp—1)
= (jOV(.Et7 Et+k) - (_\JOV(.Et7 EH,kfl) - COV(Etfl, Et+k) + C]OV(.E‘tfl7 Et+k71)

202 k=0
= —0?2 k=+1
0 |k| > 1

Thus we get the autocorrelations:

,011(0) = 1,
y11(1) 1
+1) = ——
pll( ) 711(0) 9
p1i(k) = 0, for|k|>1.

Series Z,;: Since Z; = E; is white noise the following holds:
’)/22(0) = 0'2 und 722(]{3) = 0, fir ‘k’| Z 1,

Thus

p22(0) =1 und paa(k) =0, fir|k]>1.

Crosscorrelation between Y; and Z;:
The crosscovariances:

Y12(k) Cov(Yiqr, Zi) = Cov(l + Epyp, — Eyqpp—1, Ey)
= (JOV(.E‘75+]Q7 Et) — COV(Et+k71, Et)

o2 k=0

—0? k=1

0 else

Thus, the crosscorrelations are given by

1/vV/2=0.71 k=0
=¢ —1/V/2=-071 k=1
0 else

m2(k)

N RO

In this example the crosscorrelation pi2(k) describes the relation between Y;r (MA(1)-model) and
E; (white noise). The crosscorrelation is always zero, except for lag 0 and lag 1.

Simulation with R:

>

vV VvV Vv Vv

t.E <-
t.X <-
t.Y <-
t.Z <-
acf(ts

ts (rnorm(201))

(1:201) + t.E

diff(t.X)

t.E

.intersect(t.Y,t.Z), ylim=c(-1,1))
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> ccf(t.Y,t.2)
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The simulated processes Y; and Z; behave as expected from theory.

The plots clearly show that the time series are not stationary:

> ts.plot(ts.sales, ts.advert, 1ty = 1:2)
> legend(c(1950,1950), c(7.1,8.1), legend = c("sales","advert"), lty=1:2, bty="n")
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We first remove the missing values (last entry of the time series) and then calculate the first differences:
> ts.adv.dl <- diff(ts.advert[!is.na(ts.advert)])

> ts.sal.dl <- diff(ts.sales[!is.na(ts.sales)])

By differencing we can achieve stationarity as the following plots show (more or less):

> source("ftp://stat.ethz.ch/WBL/Source-WBL-2/R/f.acf.R")
> f.acf(ts.adv.dl, main="Advertising: first differences")



Advertising: first differences
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> f.acf(ts.sal.dl, main="Sales: first differences")

Sales: first differences
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c) The transfer function model

d)

o0
You =3 vV j+E
§=0
makes the assumption that a change in the advertising expenditures (Y7 ;) causes a change in the
(future) sales (Y2,), but not vice versa.

e From the correlogram of d.adv.d1 we see that the input series Y7 ; = X7, — X711 can be
described as an AR(2) model. We fit it as follows:

> (r.fit.adv <- arima(ts.adv.dl, order = c(2, 0, 0)))

Call:
arima(x = ts.adv.dl, order = c(2, 0, 0))



Coefficients:
arl ar2 intercept
-0.0066 -0.2875 -0.0003
s.e. 0.1331 0.1314 0.0244

sigma”2 estimated as 0.05171: 1log likelihood = 3.21, aic = 1.59
Hence we get the model

Y14 = —0.0066- Y1, 1 —0.2875- Yy 4 o+ Dy,

where D; is a white noise with variance 5%, = 0.052 (see component r.fit.adv$sigma2). The
mean of the time series can be regarded as zero (one gets an estimate of —0.0014).
Remark: One could also fit the AR(2) model of the first differences with the function ar.burg()
or ar.yw(), resp. The estimates of the coefficients are quite similar, though.
We apply the transformation as in the lecture:
> ts.D <- resid(r.fit.adv)
> ts.Z <- filter(ts.sal.dl, c(1, -r.fit.adv$model$phi), sides = 1)
In the transformed model -
Zt = ZV]‘thj + Ut 5

j=0
the coefficients are the same as in the original transfer function model of part c). However, the
time series D, is uncorrelated here. Hence we can estimate the coefficients v; by

~ :Y\Ql k
Vg = AQ( )
%D

, k>0

where po1 (k) denotes the empirical cross correlations of D; and Z;. The estimated coefficients 7,
are hence proportional to the empirical cross correlations pa; (k) shown in the following plot.
> ts.trans <- ts.intersect(ts.Z, ts.D)

> acf(ts.trans, ylim = c(-1, 1), plot TRUE, na.action = na.pass)
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We see that p21(0) has the largest value. We find another large value at lag &k = —1. This

shows that, contrary to our assumption in part c), there is an influence of Y5, on Y7 ;. Hence the
modeling approach is not allowed since the prerequisites are not fulfilled. However, our analysis
shows that there is a mutual influence between Y5 ; and Y7 ;.
A change in the sales hence also causes a change in the advertising expenditures. This seems to
be plausible in practice: the budget for advertising is usually established based on past sales, e.g.
as a percentage of last year's sales.
Estimation of the coefficients v; in R :
> gamma2l <- acf(ts.trans, plot = FALSE, type = "covariance",

na.action = na.pass)$acf[, 1, 2]
> round(gamma21/r.fit.adv$sigma2, 2)[1:6]
[1] 0.33 0.20 0.01 0.04 0.02 -0.11



