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State Space Models
Basic idea: There is a stochastic process/time series which

we cannot directly observe, but only under the
addition of some measurement noise.

Thus: We observe the time series ,
with iid measurement errors

Example: = # of fish in a lake
= # estimated number of fish from a sample

Other: - Dynamic linear modeling
- Regression with time-varying coefficients

tX

t t tY X V 
2~ (0, )t VV N 
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State Space Formulation
State space models are always built on two different equations, 
one of which aims for the process, and the other for the measure-
ment noise:

State Equation: , where

Observation Equation:                        , where

All matrices in this model, i.e.                      can be time-varying.
However, often they are time-constant, if anything, then is
adapting over time. 

Note: such models are usually estimated with the Kalman filter.

1t t t tX G X W  ~ (0, )t tW N w

t t t tY F X V  ~ (0, )t tV N v

, , ,t t t tG F w v
tF
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AR(1) with Measurement Noise
We assume that the true underlying process is an AR(1), i.e.

,  

where

are i.i.d. innovations, „process noise“.

In practice, we only observe , as realizations of the process

,  with , i.i.d.

and additionally, the are independent of ,      for all s,t, 
thus they are independent „observation white noise“.    

1 1t t tX X W  

t t tY X V  2~ (0, )t VV N 

ty

2~ (0, )t WW N 

tV sWsX
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More Terminology
We call

the „state equation“, and

the „observation equation“.

On top of that, we remember once again that the „process 
noise“      is an innovation that affects all future values       
and thus also       , whereas      only influences the current
observation    , but no future ones.

1 1t t tX X W  

t t tY X V 

tY
tV

tW t kX 

t kY 
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AR(1)-Example with α=0.7
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ACF/PACF of Xt
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ACF/PACF of Yt
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What is the goal?
The goal of State Space Modeling/Kalman Filtering is:

To uncover the „de-noised“ process Xt from the
observed process Yt.

• The algorithm of Kalman Filtering works with non-
stationary time series, too.

• The algorithm is based on a maximum-likelihood-
principle where one assume normal distortions.

• There are extensions to multi-dimensional state space
models. See blackboard for an example how the state
space formulation of an AR(2) is set up .
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State Space and Kalman Filtering in R
## Load the package for Kalman filtering
library(sspir)

## State Space Formulation
ssf <- SS(y = as.matrix(obs), 

Fmat = function(tt,x,phi) { return(matrix(1)) },
Gmat = function(tt,x,phi) { return(matrix(0.7)) },
Vmat = function(tt,x,phi) { return(matrix(0.5)) },
Wmat = function(tt,x,phi) { return(matrix(0.1)) },
m0 = matrix(0), C0 = matrix(0.1))

## Kalman Filtering
fit  <- kfilter(ssf)
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Kalman Filter Solution
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AR(1) Simulation Example with Kalman Filter Output
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State Space Formulation of an AR(2)
 see blackboard...
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Dynamic Linear Models
In particular: regression models with time-varying coefficients

Example: the sales of a housing company depend on the
general level of sales in that area at time t, and
on the pricing policy at time t.

This is a regression model with price as the predictor, and the
general sales level as the intercept. They are time-varying:

Here,                    are random elements, noise & perturbations

t t t t tS L P V  

1t t tL L L   1t t t    

, ,t t tV L  
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Simulation Example
 see blackboard...
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Kalman Filtering for Regression
### State Space Formulation
ssf <- SS(y=y.mat, x=x.mat,

Fmat=function(tt,x,phi)  return(matrix(c(x[tt,1],x[tt,2]),2,1)),
Gmat=function(tt,x,phi) return(diag(2)),
Wmat=function(tt,x,phi) return(0.1*diag(2)),
Vmat=function(tt,x,phi) return(matrix(1)),
m0=matrix(c(5,3),1,2),C0=10*diag(2))

## Kalman-Filtering
fit <- kfilter(ssf)
plot(fit$m[,1], type="l", xlab="Time", ylab="Intercept")
plot(fit$m[,2], type="l", xlab="Time", ylab="Slope")
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Kalman Filter Solution
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Summary of Kalman Filtering
Summary:

1) The Kalman Filter is a recursive algorithm

2) It relies on an update idea, i.e. we update the
forecast with the difference .

3) The weight of the update is determined by the
relation between the process variance and the
measurement noise .  

4) This relies on the knowledge of G, F,     ,    . In R
we have procedures where everything is estimated
simultaneously.

1,
ˆ

t tX  1 1,
ˆ( )t t ty Y 

2
W

2
V

2
W

2
V
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Additional Remarks
1) For the recursive approach of Kalman filtering, initial

values are necessary. Their choice is not crucial, their
influence cancels out rapidly.

2) The procedures yield forecast and filter intervals:                     
and

3) State space models are a very rich class. Every 
ARIMA(p,d,q) can be written in state space form, and
the Kalman filter can be used for estimating the
coefficients.

1, 1,
ˆ 1.96t t t tX R   1, 1 1, 1

ˆ 1.96t t t tX R    


