



Marcel Dettling

Institute for Data Analysis and Process Design

**Zurich University of Applied Sciences** 

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, April 28, 2014

# Forecasting Decomposed Series

The principle for forecasting time series that are decomposed into trend, seasonal effect and remainder is:

### 1) Stationary Remainder

Is usually modelled with an ARMA(p,q), so we can generate a time series forecast with the methodology from before.

### 2) Seasonal Effect

Is assumed as remaining "as is", or "as it was last" (in the case of evolving seasonal effect) and extrapolated.

### 3) Trend

Is either extrapolated linearly, or sometimes even manually.

# Forecasting Decomposed Series: Example



**Unemployment in Maine** 

# Forecasting Decomposed Series: Example



Logged Unemployment in Maine

# Forecasting Decomposed Series: Example



STL-Decomposition of Logged Maine Unemployment Series

## Forecasting Decomposed Series: Example



# Forecasting Decomposed Series: Example



# Forecasting Decomposed Series: Example



# Forecasting Decomposed Series: Example



**Forecast of Logged Unemployment in Maine** 



Zurich University

# Simple Exponential Smoothing

This is a quick approach for estimating the current level of a time series, as well as for forecasting future values. It works for any stationary time series without a trend and season.

### The simple, intuitive idea behind is:

$$\hat{X}_{n+1,1:n} = \sum_{i=0}^{n-1} w_i x_{n-i}$$
 where  $w_0 \ge w_1 \ge w_2 \ge ... \ge 0$  and  $\sum_{i=0}^{n-1} w_i = 1$ 

The weights are often chosen to be exponentially decaying, two examples with different parameters are on the next slide. However, there is also a deeper mathematical notion of ExpSmo.

### → See the blackboard for the derivation...

# **Choice of Weights**

An usual choice are exponentially decaying weights:

$$w_i = \alpha (1-\alpha)^i$$
 where  $\alpha \in (0,1)$ 



Zurich University of Applied Sciences



of Applied Sci

# Simple Exponential Smoothing: Summary

### What is it?

- A method for estimating and forecasting the conditional mean

**Basic notion:**  $X_t = \mu_t + E_t$ 

- $\mu_t$  is the conditional expectation, which we try to estimate from the data. The estimate  $a_t$  is called level of the series.
- $E_t$  is a completely random innovation term.

### Estimation of the level: two notions exist...

- Weighted updating:  $a_t = \alpha x_t + (1 \alpha) a_{t-1}$
- Exponential smoothing:  $a_t = \sum_{i=0}^{\infty} \alpha (1-\alpha)^i x_{t-i}$

#### Zurich University of Applied Sciences

### Applied Time Series Analysis SS 2014 – Week 10



# Forecasting with Exponential Smoothing

The forecast, for any horizon k > 0 is:

$$\hat{X}_{n+k,1:n} = a_n$$

Hence, the forecast is given by the current level, and it is constant for all horizons k. However, it does depend on the choice of the smoothing parameter  $\alpha$ . In R, a data-adaptive solution is available by minimizing SS1PE:

1-step-prediction-error: 
$$e_t = x_t - \hat{X}_{t;1:(t-1)} = x_t - a_{t-1}$$
  
 $\hat{\alpha} = \arg \min_{\alpha} \sum_{i=2}^{n} e_t^2$ 

The solution needs to be found with numerical optimization.



**Zurich University** 

# **Exponential Smoothing: Example**





**Zurich University** 

# **Exponential Smoothing: Example**

> fit <- HoltWinters(cmpl, beta=F, gamma=F)</pre>

Holt-Winters exponential smoothing without trend and without seasonal component.

Smoothing parameters:

- alpha: 0.1429622
- beta : FALSE
- gamma: FALSE

Coefficients: [,1] a 17.70343



**Zurich University** 

# **Exponential Smoothing: Example**



**Holt-Winters filtering** 

#### Zurich University of Applied Sciences

### Applied Time Series Analysis SS 2014 – Week 10



# Holt-Winters Method

### **Purpose:**

- is for time series with deterministic trend and/or seasonality
- is still a heuristic, model-free approach
- again based on weighted averaging

### Is based on these 3 formulae:

$$a_{t} = \alpha(x_{t} - s_{t-p}) + (1 - \alpha)(a_{t-1} + b_{t-1})$$
  

$$b_{t} = \beta(a_{t} - a_{t-1}) + (1 - \beta)b_{t-1}$$
  

$$s_{t} = \gamma(x_{t} - a_{t}) + (1 - \gamma)s_{t-p}$$

### → See the blackboard for the derivation...



**Zurich University** 

## Holt-Winters: Example



**Sales of Australian White Wine** 



**Zurich University** 

# Holt-Winters: Example





**Zurich University** 

Holt-Winters: R-Code and Output

> HoltWinters(x = log(aww))

Holt-Winters exponential smoothing with trend and additive seasonal component.

```
Smoothing parameters:
alpha: 0.4148028; beta : 0; gamma: 0.4741967
```

```
Coefficients:

a 5.62591329; b 0.01148402

s1 -0.01230437; s2 0.01344762; s3 0.06000025

s4 0.20894897; s5 0.45515787; s6 -0.37315236

s7 -0.09709593; s8 -0.25718994; s9 -0.17107682

s10 -0.29304652; s11 -0.26986816; s12 -0.01984965
```



**Zurich University** 

## Holt-Winters: Fitted Values & Predictions



**Holt-Winters filtering** 



**Zurich University** 

# Holt-Winters: In-Sample Analysis



**Holt-Winters-Fit** 



**Zurich University** 

## Holt-Winters: Predictions on Original Scale

