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Basics of Modeling

(Time Series) Model  Data

Data       (Time Series) Model

We will first discuss the theoretical properties of the most
important time series processes and then mainly focus
on how to successfully fit models to data.

Simulation & Generation

Estimation, Inference & Residual Analysis
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A Simple Model: White Noise
A time series is a White Noise series if the random
variables                are independent and identically distributed with
mean zero.

This imples that all variables      have the same variance , and

for all          . 

Thus, there are no autocorrelations either:             for all          .  

If in addition, the variables also follow a Gaussian distribution, i.e.
, the series is called Gaussian White Noise.

The term White Noise is due to the analogy to white light.
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Example: Gaussian White Noise
> plot(ts(rnorm(200, mean=0, sd=1)))
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Example: Gaussian White Noise
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Estimating the Conditional Mean
 see blackboard…
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Time Series Modeling
There is a wealth of time series models

- AR autoregressive model
- MA moving average model
- ARMA combination of AR & MA
- ARIMA non-stationary ARMAs
- SARIMA seasonal ARIMAs
- …

We start by discussing autoregressive models. They are
perhaps the simplest and most intuitive time series models
that exist.
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Basic Idea for AR(p)-Models
We have a process where the random variable      depends on an 
auto-regressive linear combination of the preceding ,
plus a „completely independent“ term called innovation .  

Here, p is called the order of the autoregressive model. Hence, we
abbreviate by AR(p). An alternative notation is with the backshift
operator : 

or short, 

Here,           is called the characteristic polynomial of the AR(p).
It determines most of the relevant properties of the process.  
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AR(1)-Model
The simplest model is the AR(1)-model

where

is i.i.d with and
We also require that is independent of

Under these conditions,      is a causal White Noise process,
or an innovation. Be aware that this is stronger than the iid
requirement: not every iid process is an innovation and that
property is central to AR(p)-modelling.
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AR(p)-Models and Stationarity
The following is absolutely essential:

AR(p) models must only be fitted to stationary time series. Any 
potential trends and/or seasonal effects need to be removed first. 
We will also make sure that the  processes are stationary.

Under which circumstances is an AR(p) stationary?

 see blackboard…
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Stationarity of AR(p)-Processes
As we have seen, any stationary AR(p) meets:

1) 

2) The condition on                    :

All (complex) roots of the characteristic polynom

lie outside of the unit circle (can be verified with polyroot())

We can always shift a stationary AR(p) process:
The resulting process is still stationary and allows for greater
flexibility in modelling. It is a shifted AR(p) process.
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A Non-Stationary AR(2)-Process
is not stationary… 1 2

1 1
2 2t t t tX X X E   

Non-Stationary AR(2)
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Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=0.7
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=-0.7
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=1
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Autocorrelation of AR(p) Processes
On the blackboard…

Yule-Walker Equations

We observe that there exists a linear equation system built up from
the AR(p)-coefficients and the ACF-coefficients of up to lag p. 
These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series
2) Plug-in the estimates into the Yule-Walker-Equations
3) The solution are the AR(p)-coefficients
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Theoretical vs. Estimated ACF

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

A
C

F

True ACF of AR(1)-process with alpha_1=0.7

0 50 100 150 200

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

Estimated ACF from an AR(1)-series with alpha_1=0.7



18Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 04 
Theoretical vs. Estimated ACF
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AR(3): Simulation and Properties
> xx <- arima.sim(list(ar=c(0.4, -0.2, 0.3)), 
n=200)

AR(3) with 1=-0.4, 2=-0.2, 3=0.3
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AR(3): Simulation and Properties
> autocorr <- ARMAacf(ar=c(0.4, -0.2, 0.3),...) 
> plot(0:20, autocorr, type="h", xlab="Lag")
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AR(3): Simulation and Properties
> autocorr <- ARMAacf(ar=..., pacf=TRUE, ...) 
> plot(0:20, autocorr, type="h", xlab="Lag")
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Fitting AR(p)-Models
This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?
- will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients
- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

3) Residual Analysis
- to be discussed
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AR-Modelling

1                                  2                                     3

Identification Parameter Model
of the Order p Estimation Diagnostics

- ACF/PACF - Regression - Residual Analysis
- AIC/BIC - Yule-Walker - Simulation

- MLE
- Burg
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Is an AR(p) suitable, and what is p?
- For all AR(p)-models, the ACF decays exponentially

quickly, or is an exponentially damped sinusoid.

- For all AR(p)-models, the PACF is equal to zero for
all lags k>p. The behavior before lag p can be anything.

If what we observe is fundamentally different from the above, it is
unlikely that the series was generated from an AR(p)-process. We
thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities (bias, 
variability, compensation issue) and is tricky to interpret!!!
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Model Order for log(lynx)
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Parameter Estimation for AR(p)
Observed time series are rarely centered. Then, it is inappropriate
to fit a pure AR(p) process. All R routines by default assume the
shifted process . Thus, we face the problem:

The goal is to estimate the global mean , the AR-coefficients
, and some parameters defining the distribution of the

innovation . We usually assume a Gaussian, hence this is .

We will discuss 4 methods for estimating the parameters:

OLS, Burg’s algorithm, Yule-Walker, MLE
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OLS Estimation
If we rethink the previously stated problem:

we recognize a multiple linear regression problem without
intercept on the centered observations. What we need to do is:

1) Estimate and determine

2) Run a regression w/o intercept on      to obtain

3) For , take the residual standard error from the output.

This all works without any time series software, but is a bit
cumbersome to implement. Dedicated procedures exist...
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OLS Estimation
> f.ols <- ar.ols(llynx, aic=F, inter=F, order=2)
> f.ols
Coefficients:

1        2  
1.3844  -0.7479

Order selected 2  sigma^2 estimated as 0.2738

> f.ols$x.mean
[1] 6.685933

> sum(na.omit(f.ols$resid)^2)/112
[1] 0.2737594
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Burg‘s Algorithm
While OLS works, the first      instances are never evaluated as
responses. This is cured by Burg’s algorithm, which uses the 
property of time-reversal in stochastic processes. We thus 
evaluate the RSS of forward and backward prediction errors:

In contrast to OLS, there is no explicit solution and numerical 
optimization is required. This is done with a recursive method 
called the Durbin-Levison algorithm (implemented in R).
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Burg’s Algorithm
> f.burg <- ar.burg(llynx, aic=F, order.max=2)
> f.burg

Coefficients:
1        2  

1.3831  -0.7461  

Order selected 2  sigma^2 estimated as  0.2707

> f.ar.burg$x.mean
[1] 6.685933

Note: The innovation variance is estimated from the Durbin-
Levinson updates and not from the residuals using the MLE!
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Yule-Walker Equations
The Yule-Walker-Equations yield a LES that connects the true ACF 
with the true AR-model parameters. We plug-in the estimated ACF 
coefficients

for k=1,…,p

and can solve the LES to obtain the AR-parameter estimates.

is the arithmetic mean of the time series
is obtained from the fitted coefficients via
the autocovariance of the series and takes
a different value than before!

There is an implementation in R with function ar.yw().
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Yule-Walker Equations
> f.ar.yw

Call: ar.yw.default(x = log(lynx), aic = FALSE, 
order.max = 2)

Coefficients:
1        2  

1.3504  -0.7200  

Order selected 2  sigma^2 estimated as  0.3109

While the Yule-Walker method is asymptotically equivalent to
OLS and Burg’s algorithm, it generally yields a solution with
worse Gaussian likelihood on finite samples
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Maximum-Likelihood-Estimation
Idea: Determine the parameters such that, given the observed 

time series , the resulting model is the most 
plausible (i.e. the most likely) one.

This requires the choice of a probability model for the time series. 
By assuming Gaussian innovations,                        , any AR(p) 
process has a multivariate normal distribution:

, with     depending on

MLE then provides simultaneous estimates by optimizing:  

1( ,..., )ny y

2~ (0, )t EE N 

1( ,..., ) ~ ( 1, )nY Y Y N m V  V 2, E 

2 2

1

ˆ( , ) exp ( )
n

E t t
t

L m x x 


 
   

 


Marcel Dettling, Zurich University of Applied Sciences



34Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 04
Maximum-Likelihood Estimation
> f.ar.mle

Call: arima(x = log(lynx), order = c(2, 0, 0))

Coefficients:
ar1      ar2  intercept

1.3776  -0.7399     6.6863
s.e. 0.0614   0.0612     0.1349

sigma^2=0.2708; log likelihood=-88.58; aic=185.15

While MLE by default assumes Gaussian innovations, it still 
performs resonably for other distributions as long as they are
not extremly skewed or have very precarious outliers.
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Practical Aspects
• All 4 estimation methods are asymptotically equivalent.

• Even on finite samples, the differences are usually small.

• Under Gaussian distribution, OLS and MLE coincide.

• OLS/YW: explicit solution; Burg/MLE: numerical solution.

• Functions ar.xx() provide easy AIC estimation of     .

•   Function arima() provides standard errors for all parameters.

-> Either work with ar.burg() or with arima(), depending on 
whether you want AIC or standard errors. Watch out for war-
nings if the numerical solution do not converge.

p
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Comparison: Alpha Estimation vs. Method
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Comparison: Alpha Estimation vs. n
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Comparison: Sigma Estimation vs. Method
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Comparison: Sigma Estimation vs. n
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Model Diagnostics
What we do here is Residual Analysis:

„residuals“ = „estimated innovations“

= 

=

Remember the assumptions we made:

i.i.d,                 ,

and probably
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Model Diagnostics
We check the assumptions we made with the following means:

a) Time series plot of

b) ACF/PACF plot of

c) QQ-plot of

 The innovation time series should look like white noise

Lynx example:
fit <- arima(log(lynx), order=c(2,0,0))

acf(resid(fit)); pacf(resid(fit))
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Model Diagnostics: log(lynx) data, AR(2)
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Model Diagnostics: log(lynx) data, AR(11)
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Model Diagnostics: Normal Plots
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AIC/BIC
If several alternative models show satisfactory residuals, using 
the information criteria AIC and/or BIC can help to choose the 
most suitable one:

AIC = 
BIC = 

where                                                    

= „Likelihood Function“
p is the number of parameters and equals p or p+1
n is the time series length

Goal: Minimization of AIC and/or BIC

2log( ) 2L p 
2log( ) 2 log( )L n p 

2 2( , , ) ( , , , )L f x     
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AIC/BIC
We need (again) a distribution assumption in order to compute
the AIC and/or BIC criteria. Mostly, one relies again on i.i.d. 
normally distributed innovations. Then, the criteria simplify to:

AIC = 
BIC = 

Remarks:

 AIC tends to over-, BIC to underestimate the true p
 Plotting AIC/BIC values against p can give further insight. 

One then usually chooses the model where the last 
significant decrease of AIC/BIC was observed

2ˆlog( ) 2En p 
2ˆlog( ) 2 log( )En n p 
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AIC/BIC
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Diagnostics by Simulation
As a last check before a model is called appropriate, simulating 
from the estimated coefficients and visually inspecting the 
resulting series (without any prejudices) to the original can be 
done.

 The simulated series should „look like“ the original. If 
this is not the case, the model failed to capture (some 
of) the properties of the original data.
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Diagnostics by Simulation, AR(2)
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Diagnostics by Simulation, AR(11)
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