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Where are we?
For most of the rest of this course, we will deal with (weakly) 
stationary time series. They have the following properties:

•
•
•

If a time series is non-stationary, we know how to decompose 
into deterministic and stationary, random part. 

Our forthcoming goals are:
- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts
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Autocorrelation
The aim of this section is to estimate, explore and understand
the dependency structure within a stationary time series.

Def: Autocorrelation

Autocorrelation is a dimensionless measure for the strength of the
linear association between the random variables         and . 

There are 2 estimators, i.e. the lagged sample and the plug-in.
 see slides & blackboard for a sketch of the two approaches…
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Practical Interpretation of Autocorrelation
We e.g. assume

 The square of the autocorrelation, i.e.                     ,
is the percentage of variability explained by the linear 
association between      and its predecessor       . 

 Thus, in our example,        accounts for roughly 49%
of the variability observed in random variable     . Only 
roughly because the world is not linear.

 From this we can also conclude that any                   is 
not a strong association, i.e. has a small effect on the 
next observation only. 
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Example: Wave Tank Data
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Lagged Scatterplot Approach
Generate a plot of               for all                     and compute the
canonical Pearson correlation coefficient from these data pairs.

> lag.plot(wave, do.lines=FALSE, pch=20)

> title("Lagged Scatter, k=1, cor=0.47")

> 
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Plug-In Estimation
For obtaining an estimate of         , determine the sample 
covariance at lag     and divide by the sample variance.

where

This is the standard approach for computing autocorrelations in 
time series analysis. It is better than the lagged scatterplot idea.
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Comparison Idea 1 vs. Idea 2
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Comparison Idea 1 vs. Idea 2
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What is important about ACF estimation?
- Correlations are never to be trusted without a visual

inspection with a scatterplot.

- The bigger the lag k, the fewer data pairs remain for 
estimating the acf at lag k.

- Rule of the thumb: the acf is only meaningful up to about

a) lag 10*log10(n)
b) lag n/4

- The estimated sample ACs can be highly correlated.

- The correlogram is only meaningful for stationary series!!!
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Correlogram
> acf(wave, ylim=c(-1,1))
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Random Series – Confidence Bands
If a time series is White Noise, i.e. consists of iid random
variables     , the (theoretical) autocorrelations are all 0.

However, the estimated are not. We thus need to decide, 
whether an observed is significantly so, or just appeared
by chance. This is the idea behind the confidence bands.  
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Random Series – Confidence Bands
For long iid series, it can be shown that is approximately

.  Thus, under the null hypothesis that a series is iid
and hence , the 95% acceptance region for the null is
given by the interval . 
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Random Series – Confidence Bands
Thus, even for a (long) i.i.d. time series, we expect that 5% of the 
estimated autocorrelation coeffcients exceed the confidence 
bounds. They correspond to type I errors.

Note: the probabilistic properties of non-normal i.i.d series are 
much more difficult to derive.
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Ljung-Box Test
The Ljung-Box approach tests the null hypothesis that a number of 
autocorrelation coefficients are simultaneously equal to zero. Thus, 
it tests for significant autocorrelation in a series. The test statistic is:

In R:

> Box.test(wave, lag=10, type="Ljung-Box")
Box-Ljung test
data: wave 
X-squared = 344.0155, df = 10, p-value < 2.2e-16
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Short Term Positive Correlation
Simulated Short Term Correlation Series
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Short Term Positive Correlation
Stationary series often exhibit short-term correlation, characterized
by a fairly large value of         , followed by a few more coefficients
which, while significantly greater than zero, tend to get successively
smaller. For longer lags k, they are close to 0.

A time series which gives rise to such a correlogram, is one for
which an observation above the mean tends to be followed by one
or more further observations above the mean, and similarly for
observations below the mean.

A model called an autoregressive model may be appropriate for
series of this type.  

ˆ (1)
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Alternating Time Series
Simulated Alternating Correlation Series
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Non-Stationarity in the ACF: Trend
Simulated Series with a Trend
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Non-Stationarity in the ACF: Seasonal Pattern
De-Trended Mauna Loa Data
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ACF of the Raw Airline Data
Airline Data
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Outliers and the ACF
Outliers in the time series strongly affect the ACF estimation!

Beaver Body Temperature
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Outliers and the ACF
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Outliers and the ACF
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Outliers and the ACF
The estimates are very sensitive to outliers. They can be
diagnosed using the lagged scatterplot, where every single outlier
appears twice.

Strategy for dealing with outliers:

- if it is bad data point: delete the observation

- replace the now missing observations by either:

a) global mean of the series
b) local mean of the series, e.g. +/- 3 observations
c) fit a time series model and predict the missing value

ˆ ( )k
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General Remarks about the ACF
a) Appearance of the series   =>   Appearance of the ACF

Appearance of the series   <=   Appearance of the ACF

b) Compensation

All autocorrelation coefficients sum up to -1/2. For large 
lags k, they can thus not be trusted, but are at least 
damped. This is a reason for using the rule of the thumb.
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How Well Can We Estimate the ACF?
What do we know already?

- The ACF estimates are biased
- At higher lags, we have few observations, and thus variability
- There also is the compensation problem…

 ACF estimation is not easy, and interpretation is tricky.

For answering the question above:

- For an AR(1) time series process, we know the true ACF
- We generate a number of realizations from this process
- We record the ACF estimates and compare to the truth
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Theoretical vs. Estimated ACF
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How Well Can We Estimate the ACF?
A) For AR(1)-processes we understand the theoretical ACF

B) Repeat for i=1, …, 1000

Simulate a length n AR(1)-process
Estimate the ACF from that realization

End for

C) Boxplot the (bootstrap) sample distribution of ACF-estimates
Do so for different lags k and different series length n
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How Well Can We Estimate the ACF?
Variation in ACF(1) estimation
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How Well Can We Estimate the ACF?
Variation in ACF(2) estimation
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How Well Can We Estimate the ACF?
Variation in ACF(5) estimation
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How Well Can We Estimate the ACF?
Variation in ACF(10) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0



34Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 03

Trivia ACF Estimation
• In short series, the ACF is strongly biased. The consistency 

kicks in and kills the bias only after ~100 observations.

• The variability in ACF estimation is considerable. We observe 
that we need at least 50, or better, 100 observations.

• For higher lags k, the bias seems a little less problematic, but 
the variability remains large even with many observations n.

• The confidence bounds, derived under independence, are 
not very accurate for (dependent) time series.

 Interpreting the ACF is tricky!
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Application: Variance of the Arithmetic Mean
Practical problem: we need to estimate the mean of a realized/ 
observed time series. We would like to attach a standard error.

• If we estimate the mean of a time series without taking into
account the dependency, the standard error will be flawed. 

• This leads to misinterpretation of tests and confidence
intervals and therefore needs to be corrected.

• The standard error of the mean can both be over-, but also 
underestimated. This depends on the ACF of the series.

 For the derivation, see the blackboard…
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Partial Autocorrelation Function (PACF)
The  partial autocorrelation is defined as the correlation
between and , given all the values in between.

Interpretation:

• Given a time series    , the partial autocorrelation of lag k, is 
the autocorrelation between     and         with the linear 
dependence of        through to removed.

• One can draw an analogy to regression. The ACF measu-
res the „simple“ dependence between and , whereas
the PACF measures that dependence in a „multiple“ fashion.

t kX tX

kthk
t kX  tX

1 1 1 1( , | ,..., )k t k t t t t k t kCor X X X x X x         

tX
tX t kX 

1tX  1t kX  
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Facts About the PACF and Estimation
We have:

•

• for AR(1) models, we have ,
because

• For estimating the PACF, we utilize the fact that for any
AR(p) model, we have:               and for all          .

Thus, for finding , we fit an AR(p) model to the series
for various orders p and set

1 1 
2

2 1
2 2

11
 





 2 0 

2
2 1 

p p 

ˆ p
ˆˆ p p 

0k  k p
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Facts about the PACF
• Estimation of the PACF is implemented in R.

• The first PACF coefficient is equal to the first ACF coefficient. 
Subsequent coefficients are not equal, but can be derived
from each other.

• For a time series generated by an AR(p)-process, the
PACF coefficient is equal to the AR-coefficient. All PACF 
coefficients for lags are equal to 0.

• Confidence bounds also exist for the PACF.

thp
thp

k p


