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Descriptive Analysis
As always, when working with data, it is important to first gain 
an overview. In time series analysis, the following is required:

• Understanding the context of the data and the data source
• Making suitable plots, looking for structure and outliers
• Thinking about transformations, e.g. to reduce skewness
• Judging stationarity and achieve it by decomposition
• For stationary series, the analysis of autocorrelations



3Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 02

Visualization: Time Series Plot
> plot(tsd, ylab="(%)", main="Unemployment in Maine")
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")
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Only One or Multiple Frames?
• Due to different scale/units it is often impossible to directly

plot multiple time series in one single frame. Also, multiple 
frames are convenient for visualizing the series.

• If the relative development of multiple series is of interest, 
then we can (manually) index the series and (manually) plot 
them into one single frame.

• This clearly shows the magnitudes for trend and seasonality. 
However, the original units are lost.

• For details on how indexing is done, see the scriptum.
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")

Time

In
de

x

1960 1965 1970 1975 1980 1985 1990

20
0

40
0

60
0

80
0

Indexed Chocolate, Beer & Electricity

choc
beer
elec



7Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 02

Transformations
For strictly stationary time series, we have:

We did not specify the distribution     and there is no restriction 
to it. However, many popular time series models are based on:

1) Gaussian distribution
2) linear relations between the variables 

If the data show different behaviour, we can often improve the 
situation by transforming             to                      . The most 
popular and practically relevant transformation is:

~tX F

F

1,..., nx x 1( ),..., ( )ng x g x

( ) log( )g   
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Transformations: Lynx Data

Lynx Trappings
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Transformations: Lynx Data
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Transformations: Lynx Data
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Decomposition
Stationarity is key for statistical learning, but real data often 
have trend/seasonality, and are non-stationary. We can (often) 
deal with that using the simple additive decomposition model: 

= trend + seasonal effect + stationary remainder

The goal is to find a remainder term     , as a sequence of 
correlated random variables with mean zero, i.e. a stationary ts.

We can employ: 1) taking differences (=differencing) 
2) smoothing approaches (= filtering)
3) parametric models (= curve fitting)
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t t t tX m s R  

tR



Multiplicative Decomposition
is not always a good model: 

12Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 02

t t t tX m s R  
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Multiplicative Decomposition
Better:                       , respectively
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t t t tX m s R   log( )t t t tX m s R    
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Differencing: Removing a Trend
 see blackboard…

Summary:

• Differencing means analyzing the observation-to-observation 
changes in the series, but no longer the original.

• This may (or may not) remove trend/seasonality, but does not 
yield estimates for and , and not even for .  

• Differencing changes the dependency in the series, i.e it
artificially creates new correlations.

tm ts tR
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Differencing: Example

tm ts tR

Swiss Traffic Index

Time

In
de

x 
V

al
ue

1990 1995 2000 2005 2010

10
0

11
0

12
0

13
0



16Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 02

Differencing: Example
> plot(diff(SwissTraffic), main=…)

tm ts tR
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Differencing: Further Remarks
• If log-transformed series are difference (i.e. the SMI series),

we are considering (an approximation to) the relative changes:

• The backshift operator “go back 1 step” allows for
convenient notation with all differencing operations: 

Backshift operator:

Differencing:

1 1
1

1 1 1

log( ) log( ) log log 1t t t t t
t t t

t t t

X X X X XY X X
X X X

 


  

    
        

   

1( )t tB X X 

1(1 )t t t tY B X X X    
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Differencing Series with Transformation
SMI Daily Closing Value
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Differencing Series with Transformation
SMI Log-Returns
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Higher-Order Differencing
The “normal” differencing from above managed to remove any 
linear trend from the data. In case of polynomial trend, that is no 
longer true. But we can take higher-order differences:

A quadratic trend can be removed by taking second-order 
differences. However, what we obtain is not an estimate of the 
remainder term     , but something that is much more complicated. 

2
1 2

2

1 1 2

1 2 2

,
(1 )
( ) ( )

2 2

t t t

t t

t t t t

t t t

X t t R R stationary
Y B X

X X X X
R R R

  


  

 

   
 
   
   

tR
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Removing Seasonal Effects
Time series with seasonal effects can be made stationary through
differencing by comparing to the previous periods’ value.

•   Here,      is the frequency of the series.

• A potential trend which is exactly linear will be removed by the
above form of seasonal differencing.

• In practice, trends are rarely linear but slowly varying:
However, here we compare      with        , which means that 
seasonal differencing often fails to remove trends completely. 

(1 )p
t t t t pY B X X X    

p

1t tm m 
tm t pm 
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Seasonal Differencing: Example
> data(co2); plot(co2, main=…)
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Seasonal Differencing: Example
> sd.co2 <- diff(co2, lag=12)

Differenced Mauna Loa Data (p=12)
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Seasonal Differencing: Example
This is:

Twice Differenced Mauna Loa Data (p=12, p=1)
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Differencing: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be removed

+ procedure is very quick and very simple to implement

- ,     and are not known, and cannot be visualised

- resulting time series will be shorter than the original

- differencing leads to strong artificial dependencies

- extrapolation of ,    is not possible

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Smoothing, Filtering: Part 1
In the absence of a seasonal effect, the trend of a non-stationary 
time series can be determined by applying any additive, linear 
filter. We obtain a new time series     , representing the trend:

- the window, defined by     and    , can or can‘t be symmetric
- the weights, given by     , can or can‘t be uniformly distributed
- other smoothing procedures can be applied, too.

ˆ
q
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Trend Estimation with the Running Mean
> trd <- filter(SwissTraffic, filter=c(1,1,1)/3)
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Smoothing, Filtering: Part 2
In the presence a seasonal effect, smoothing approaches are still 
valid for estimating the trend. We have to make sure that the sum 
is taken over an entire season, i.e. for monthly data: 

An estimate of the seasonal effect     at time    can be obtained by:

By averaging these estimates of the effects for each month, we 
obtain a single estimate of the effect for each month.

6 5 5 6
1 1 1ˆ 7,..., 6

12 2 2t t t t tm X X X X for t n   
        
 



ts t

ˆ ˆt t ts x m 
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Trend Estimation for Mauna Loa Data
> wghts <- c(.5,rep(1,11),.5)/12
> trd <- filter(co2, filter=wghts, sides=2)
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Estimating the Seasonal Effects
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Estimating the Remainder Term
ˆ ˆ ˆt t t tR x m s  

Estimated Stochastic Remainder Term
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Smoothing, Filtering: Part 3
• The smoothing approach is based on estimating the trend

first, and then the seasonality.

• The generalization to other periods than , i.e. monthly
data is straighforward. Just choose a symmetric window and
use uniformly distributed coefficients that sum up to 1.

• The sum over all seasonal effects will be close to zero. 
Usually, it is centered to be exactly there.

• This procedure is implemented in R with function: 
decompose()

12p 
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Estimating the Remainder Term
> plot(decompose(co2))
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Smoothing, Filtering: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ ,     and are explicitly known, can be visualised

+ procedure is transparent, and simple to implement

- resulting time series will be shorter than the original

- the running mean is not the very best smoother

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Smoothing, Filtering: STL-Decomposition
The Seasonal-Trend Decomposition Procedure by Loess

•    is an iterative, non-parametric smoothing algorithm
•    yields a simultaneous estimation of trend and seasonal effect
 similar to what was presented above, but more robust!

+ very simple to apply
+ very illustrative and quick
+ seasonal effect can be constant or smoothly varying
- model free, extrapolation and forecasting is difficult

 Good method for „having a quick look at the data“
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STL-Decomposition for Periodic Series
> co2.stl <- stl(co2, s.window="periodic")

> plot(co2.stl, main="STL-Decomposition of CO2 Data")

STL-Decomposition of CO2 Data
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Using the stl() Function in R

We need to supply argument x (i.e. the data) and s.window
(for seasonal smoothing), either by setting it to "periodic" or 
to a numerical value. We can adjust t.window to a numerical 
value for altering the trend smoothing. Leave the rest alone!
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STL for Series with Evolving Seasonality
> lap.stl <- stl(lap, s.window=13) 
> plot(lap.stl, main="STL for Air Pax Bookings")
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Monthplot, s.window="periodic"
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STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window="periodic"))

Constant Seasonality:

Check the STL plot on
the previous slide for
assessing whether this
is reasonable or not!



Monthplot, s.window=5
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STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window=5))

Evolving Seasonality:

Too little smoothing in
the seasonal effect, the
changes are irregular. 
As a remedy, increase
parameter s.window



Monthplot, s.window=13
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STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window=13))

Evolving Seasonality:

Adequate amount of
smoothing will well
chosen s.window
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Smoothing, Filtering: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ ,     and are explicitly known, can be visualised

+ procedure is transparent, and simple to implement

- resulting time series will be shorter than the original

- the running mean is not the very best smoother

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Parametric Modelling
When to use?

 Parametric modelling is often used if we have previous 
knowledge about the trend following a functional form.

 If the main goal of the analysis is forecasting, a trend in 
functional form may allow for easier extrapolation than a 
trend obtained via smoothing.

 It can also be useful if we have a specific model in mind 
and want to infer it. Caution: correlated errors!
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Parametric Modelling: Example
Maine unemployment data: Jan/1996 – Aug/2006

Unemployment in Maine
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Modeling the Unemployment Data
Most often, time series are parametrically decomposed by using
regression models. For the trend, polynomial functions are widely
used, whereas the seasonal effect is modelled with dummy
variables (= a factor).

where

Remark: choice of the polynomial degree is crucial!

2 3 4
0 1 2 3 4 ( )t i t tX t t t t E               

 
 

1,2,...,128

( ) 1,2,...,12

t

i t




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Polynomial Order / OLS Fitting
Estimation of the coefficients will be done in a regression con-
text. We can use the ordinary least squares algorithm, but: 

•   we have violated assumptions,      is not uncorrelated
•   the estimated coefficients are still unbiased
•   standard errors (tests, CIs) can be wrong

Which polynomial order is required?

Eyeballing allows to determine the minimum grade that is 
required for the polynomial. It is at least the number of 
maxima the hypothesized trend has, plus one.

tE
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Important Hints for Fitting
• The main predictor used in polynomial parametric modeling

is the time of the observations. It can be obtained by typing
time(maine).  

• For avoiding numerical and collinearity problems, it is
essential to center the time/predictors!

• R sets the first factor level to 0, seasonality is thus
expressed as surplus to the January value.

• For visualization: when the trend must fit the data, we have
to adjust, because the mean for the seasonal effect is
usually different from zero!
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Trend of O(4), O(5) and O(6)
Unemployment in Maine
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Residual Analysis: O(4)

Residuals vs. Time, O(4)
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Residual Analysis: O(5)

Residuals vs. Time, O(5)
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Residual Analysis: O(6)

Residuals vs. Time, O(6)
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Parametric Modeling: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ and are explicitly known, can be visualised

+ even some inference on trend/season is possible

+  time series keeps the original length

- choice of a/the correct model is necessary/difficult

- residuals are correlated: this is a model violation!

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s


