
How to Write an R Package

Martin Mächler
maechler@R-project.org

Seminar für Statistik, ETH Zürich
(and · ∈ {R Core Team} since 1995)

Course held on January 18, 2013

1 / 33

I The following slides are (“only”) an Introduction to R packages.

Additionally, we will work with
I The “reference” : the “Writing R Extensions” manual1.

We will get an overview and consider some sections in detail.
I Name Space Management for R, by Luke Tierney, R News June

2003 (5 pages)
I package.skeleton() to get started
I Look at many examples, including your own ones.
→ I will provide a zip archive for you to download, after the course.

1part of R (as HTML), as PDF also available from CRAN
2 / 33

How to Write an R Package

1. Packages in R - Why and How -
Overview

3 / 33

1.1 Why Packaging R ?

R packages provide a way to manage collections of functions or data
and their documentation.
I Dynamically loaded and unloaded: the package only occupies

memory when it is being used.
I Easily installed and updated: the functions, data and documentation

are all installed in the correct places by a single command that can
be executed either inside or outside R .

I Customizable by users or administrators: in addition to a site-wide
library, users can have one or more private libraries of packages.

I Validated: R has commands to check that documentation exists, to
spot common errors, and to check that examples actually run

4 / 33

1.1 Why Packaging R ? — (2)

I Most users first see the packages of functions distributed with R or
from CRAN. The package system allows many more people to
contribute to R while still enforcing some standards.

I Data packages are useful for teaching: datasets can be made
available together with documentation and examples. For example,
Doug Bates translated data sets and analysis exercises from an
engineering statistics textbook into the Devore5 package

I Private packages are useful to organise and store frequently used
functions or data. One R author has packaged ICD9 codes, for
example.

5 / 33

1.2 Structure of R packages

The basic structure of package is a directory (aka “folder”), commonly
containing
I A DESCRIPTION file with descriptions of the package, author, and

license conditions in a structured text format that is readable by
computers and by people

I A man/ subdirectory of documentation files
I An R/ subdirectory of R code
I A data/ subdirectory of datasets
I A src/ subdirectory of C, Fortran or C++ source

6 / 33

1.2 Structure of R packages — (cont)

Less commonly it contains
I inst/ for miscellaneous other stuff, notably package “vignettes”
I tests/ for validation tests
I demo/ for demo()-callable demonstrations
I po/ for message translation “lists” (from English, almost always) to

other languages.
I exec/ for other executables (eg Perl or Java)
I A configure script to check for other required software or handle

differences between systems.
Apart from DESCRIPTION these are all optional, though any useful
package will have man/ and at least one of R/ and data/.
Everything about packages is described in more detail in the Writing R
Extensions manual distributed with R .

7 / 33

Data formats

The data() command loads datasets from packages. These can be
I Rectangular text files, either whitespace or comma-separated
I S source code, produced by the dump() function in R or S-PLUS.
I R binary files produced by the save() function.
The file type is chosen automatically, based on the file extension.

8 / 33

Documentation - Help files
> help(pbirthday, help_type = "pdf")

produces a nice pdf version of what you typically get by ?pbirthday.
The R documentation format looks rather like LATEX.
\name{birthday} % name of the file
\alias{qbirthday} % the functions it documents
\alias{pbirthday}
\title{Probability of coincidences}% <== one-line title of documentation page
\description{% short description:
Computes answers to a generalised \emph{birthday paradox} problem.
\code{pbirthday} computes the probability of a coincidence and
\code{qbirthday} computes the smallest number of observations needed
to have at least a specified probability of coincidence.

}
\usage{ % how to invoke the function
qbirthday(prob = 0.5, classes = 365, coincident = 2)
pbirthday(n, classes = 365, coincident = 2)
}
........

9 / 33

Documentation (2)

The file continues with sections
I \arguments, listing the arguments and their meaning
I \value, describing the returned value
I \details, a longer description of the function, if necessary.
I \references, giving places to look for detailed information
I \seealso, with links to related documentation
I \examples, with directly executable examples of how to use the

functions.
I \keyword for indexing
There are other possible sections, and ways of specifying equations,
urls, links to other R documentation, and more.

10 / 33

Documentation (3)

The documentation files can be converted into HTML, plain text, and
(via LATEX) PDF.
The packaging system can check that all objects are documented, that
the usage corresponds to the actual definition of the function, and that
the examples will run. This enforces a minimal level of accuracy on the
documentation.
I Emacs (ESS) supports editing of R documentation (as does Rstudio

and StatET).
I function prompt() and its siblings for producing such pages:
> apropos("ˆprompt")

[1] "prompt" "promptClass" "promptData" "promptMethods"
[5] "promptPackage"

NB: The prompt*() functions are called from
package.skeleton()

11 / 33

1.3 Setting up a package

The package.skeleton() function partly automates setting up a
package with the correct structure and documentation.
The usage section from help(package.skeleton) looks like
package.skeleton(name = "anRpackage", list = character(),

environment = .GlobalEnv, path = ".", force = FALSE,
namespace = TRUE, code_files = character())

Given a collection of R objects (data or functions) specified by a list
of names or an environment, or nowadays typically rather by a few
code files (“*.R - files”), it creates a package called name in the
directory specified by path.
The objects are sorted into data (put in data/) or functions (R/),
skeleton help files are created for them using prompt() and a
DESCRIPTION file, and from R 2.14.0 on, always a NAMESPACE file is
created. The function then prints out a list of things for you to do next.

12 / 33

1.4 Building a package

R CMD build (Rcmd build on Windows) will create a compressed
package file from your (source) package directory, also called “tarball”.
It does this in a reasonably intelligent way, omitting object code, emacs
backup files, and other junk. The resulting file is easy to transport
across systems and can be INSTALLed without decompressing.
All help, R, and data files now are stored in “data bases”, in
compressed form. This is particularly useful on older Windows systems
where packages with many small files waste a lot of disk space.

13 / 33

Binary and source packages

CMD build makes source packages (by default). If you want to
distribute a package that contains C or Fortran for Windows users, they
may well need a binary package, as compiling under Windows requires
downloading exactly the right versions of quite a number of tools.
Binary packages are created by R CMD INSTALLing with the extra
option --build. This produces a <pkg>.zip file which is basically a
zip archive of R CMD INSTALLing the package.
(In earlier R versions, binary packages were created by R CMD
building with the extra option --binary. This may still work, but do
not get into the habit!)

14 / 33

1.5 Checking a package
R CMD check (Rcmd check in Windows) helps you do QA/QC2 on
packages.
I The directory structure and the format of DESCRIPTION (and

possibly some sub-directories) are checked.
I The documentation is converted into text, HTML, and LATEX, and run

through pdflatex if available.
I The examples are run
I Any tests in the tests/ subdirectory are run (and possibly

compared with previously saved results)
I Undocumented objects, and those whose usage and definition

disagree are reported.
I
I (the current enumeration list in “Writing R Extensions” goes up to

number 21 !!)

2QA := Quality Assurance; QC := Quality Control
15 / 33

1.6 Distributing packages

If you have a package that does something useful and is well-tested
and documented, you might want other people to use it too. Contributed
packages have been very important to the success of R (and before
that of S).
Packages can be submitted to CRAN
I The CRAN maintainers will make sure that the package passes CMD
check (and will keep improving CMD check to find more things for
you to fix in future versions :-)).

I Other users will complain if it doesn’t work on more esoteric systems
and no-one will tell you how helpful it has been.

I But it will be appreciated. Really.

16 / 33

How to Write an R Package

2. What Packages in R and How?

17 / 33

2.1 The many “kinds” of R packages:

18 / 33

2.2 Packages: Where you get your R objects from

I In R, by default you “see” only a basic set of functions, e.g.,
c , read.table , mean , plot , . . . ,

I They are found in your “search path” of packages

> search() # the first is "your workspace"

[1] ".GlobalEnv" "package:graphics" "package:grDevices"
[4] "package:datasets" "package:stats" "package:utils"
[7] "package:methods" "Autoloads" "package:base"

> ls(pos=1) # == ls() ˜= "your workspace" - learned in "introduction"

[1] "Mlibrary" "pkg" "tpkgs"

> str(ls(pos=2)) # content of the 2nd search() entry

chr [1:87] "abline" "arrows" "assocplot" "axis" "Axis" ...

> str(ls(pos=9)) # content of the 9th search() entry

chr [1:1178] "-" "-.Date" "-.POSIXt" ":" "::" ":::" "!" ...

19 / 33

I The default list of R objects (functions, some data sets) is actually
not so small: Let’s call ls() on each search() entry:

> ls.srch <- sapply(grep("package:", search(),
+ value=TRUE), # "package:<name>" entries
+ ls, all.names = TRUE)
> fn.srch <- sapply(ls.srch, function(nm) {
+ nm[sapply(lapply(nm, get), is.function)] })
> rbind(cbind(ls = (N1 <- sapply(ls.srch, length)),
+ funs = (N2 <- sapply(fn.srch, length))),
+ TOTAL = c(sum(N1), sum(N2)))

ls funs
package:graphics 88 88
package:grDevices 107 104
package:datasets 103 0
package:stats 451 450
package:utils 202 200
package:methods 375 224
package:base 1278 1236
TOTAL 2604 2302

i.e., 2302 functions in R version 3.1.0
20 / 33

I Till now, we have used functions from packages “base”, “stats”,
“utils”, “graphics”, and “grDevices” without a need to be
aware of that.

I find("〈name〉") can be used:

> c(find("print"), find("find"))

[1] "package:base" "package:utils"

> ## sophisticated version of rbind(find("mean"), find("quantile"),):
> cbind(sapply(c("mean", "quantile", "read.csv", "plot"),
+ find))

[,1]
mean "package:base"
quantile "package:stats"
read.csv "package:utils"
plot "package:graphics"

21 / 33

I R already comes with 14 + 15 = 29 packages pre-installed, namely
the “standard (or “base”) packages

base, compiler, datasets, graphics, grDevices, grid,
methods, parallel, splines, stats, stats4, tcltk, tools,
utils

and the “recommended” packages

boot, class, cluster, codetools, foreign, KernSmooth,
lattice, MASS, Matrix, mgcv, nlme, nnet, rpart, spatial,
survival

22 / 33

I Additional functions (and datasets) are obtained by
(possibly first installing and then) loading additional “packages”.

I > library(MASS) or require(MASS)
I How to find a command and the corresponding package?

> help.search("...") 3, (see Intro)
I On the internet: CRAN (http://cran.r-project.org, see

Resources on the internet (slide 15) is a huge repository4 of R packages,
written by many experts.

I More search possibilities
http://www.r-project.org/search.html (before using
Google!)

I CRAN Task Views help find packages by application area
I What does a package do?

> help(package = class) or (←→)
> library(help = class) .

Example (of small recommended) package:
> help(package = class)

3can take l..o..n..g.. (only the first time it’s called in an R session !)
4actually a distributed Network with a server and many mirrors,

23 / 33

> help(package = class)

Information für Paket ’class’

Description:

Package: class
Priority: recommended
Version: 7.3-3
Date: 2010-12-06
Depends: R (>= 2.5.0), stats, utils
Imports: MASS
Author: Brian Ripley <ripley@stats.ox.ac.uk>.
Maintainer: Brian Ripley <ripley@stats.ox.ac.uk>
Description: Various functions for classification.
Title: Functions for Classification
License: GPL-2 | GPL-3
URL: http://www.stats.ox.ac.uk/pub/MASS4/
LazyLoad: yes
Packaged: 2010-12-06 11:46:04 UTC; ripley
Repository: CRAN
Date/Publication: 2010-12-09 11:56:32
Built: R 2.12.0; x86_64-unknown-linux-gnu; 2010-12-10 03:02:42 UTC; unix

24 / 33

Index:

SOM Self-Organizing Maps: Online Algorithm
batchSOM Self-Organizing Maps: Batch Algorithm
condense Condense training set for k-NN classifier
knn k-Nearest Neighbour Classification
knn.cv k-Nearest Neighbour Cross-Validatory

Classification
knn1 1-nearest neighbour classification
lvq1 Learning Vector Quantization 1
lvq2 Learning Vector Quantization 2.1
lvq3 Learning Vector Quantization 3
lvqinit Initialize a LVQ Codebook
lvqtest Classify Test Set from LVQ Codebook
multiedit Multiedit for k-NN Classifier
olvq1 Optimized Learning Vector Quantization 1
reduce.nn Reduce Training Set for a k-NN Classifier
somgrid Plot SOM Fits

25 / 33

How to Write an R Package

3. CRAN - Where to Get and Put Packages

26 / 33

Intermezzo: Browse CRAN
Number of CRAN (source) packages: Exponential growth for over 10
years; number 4000 hit on August 30, 2012

●

●

●●

●●

●●

●

●●

●
●

●●●

●●●●●
●

●
●●●

●●●

●●
●

●
●●

●
●●

●●●●●
●●●
●●●

●●●●●●
●●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●●
●●●

●●
●●

●●●
●●

●●●
●●●

●●●

2002 2004 2006 2008 2010 2012

number of CRAN packages − exponential(?) growth

Date

n

27 / 33

Browse CRAN — CRAN Task Views

I allow to browse packages by topic
I tools to automatically install all packages for areas of interest.
I Currently, 33 views are available:
> require("ctv")
> av <- available.views()

> unname(abbreviate(## <<- compacter for the slide
+ sapply(av, ‘[[‘, "name"), min = 19, dot=TRUE))
[1] "Bayesian" "ChemPhys" "ClinicalTrials"
[4] "Cluster" "DifferentialEquatns." "Distributions"
[7] "Econometrics" "Environmetrics" "ExperimentalDesign"
[10] "Finance" "Genetics" "Graphics"
[13] "HighPerformncCmptng." "MachineLearning" "MedicalImaging"
[16] "MetaAnalysis" "Multivariate" "NaturalLanggPrcssng."
[19] "NumericalMathematcs." "OfficialStatistics" "Optimization"
[22] "Pharmacokinetics" "Phylogenetics" "Psychometrics"
[25] "ReproducibleReserch." "Robust" "SocialSciences"
[28] "Spatial" "SpatioTemporal" "Survival"
[31] "TimeSeries" "WebTechnologies" "gR"

28 / 33

Browse CRAN

Many CRAN mirrors; “of course” we use the Swiss mirror (=
http://stat.ethz.ch/CRAN):
I The CRAN Task Views web page:
http://stat.ethz.ch/CRAN/web/views/

I Package developers may like — or hate — http:
//stat.ethz.ch/CRAN/web/checks/check_summary.html

I There’s also http://Crantastic.org

29 / 33

Installing packages from CRAN

I Via the “Packages” menu (in GUIs for R, e.g., on Mac, Windows)
I Directly via install.packages()5.

Syntax:
install.packages(pkgs,lib,repos = getOption(”repos”), ...)

pkgs: character vector names of packages whose current
versions should be downloaded from the repositories.

lib: character vector giving the library directories where to
install the packages. If missing, defaults to
.libPaths()[1].

repos: character with base URL(s) of the repositories to use,
typically from a CRAN mirror. You can choose it
interactively via chooseCRANmirror() or explicitly
by options(repos= c(CRAN="http://...")) .

. . .: many more (optional) arguments.

5which is called anyway from the menu functions
30 / 33

Installing packages – Examples

I Install once, then use it via require() or library):

> chooseCRANmirror()
> install.packages("sfsmisc")
> ## For use:
> require(sfsmisc) # to ‘‘load and attach’’ it

I > install.packages("sp", # using default ’lib’
+ repos = "http://cran.CH.r-project.org")

I or into a non-default library of packages

> install.packages("sp", lib = "my_R_folder/library",
+ repos = "http://cran.CH.r-project.org")
> ## and now load it from that library (location):
> library(sp, lib = "my_R_folder/library")

I Note: If lib is not a writable directory, R offers to create a
personal library tree (the first element of
Sys.getenv("R LIBS USER")) and install there.

31 / 33

Finding functionality in CRAN packages

. . . instead of re-inventing the wheel
I help.search(foo) (←→ ??foo6, or “Search” in

R-help.start() Web browser, finds things in all installed packages
I RSiteSearch() searches search.r-project.org
I R Project→ search mentions the above, and more, including
www.rseek.org

I R-forge - for R package developers
http://r-forge.r-project.org also has search functionality

I . . . Google

6((not yet in ESS))
32 / 33

Not re-inventing the wheel . . .

I Asking on R-help, the mailing list:
many readers are helpful, and some are experts

I “Stack Overflow”, “tagged ‘r”’:
http://stackoverflow.com/questions/tagged/r (notably
for precise technical questions)

33 / 33

