
Using R for Data Analysis and Graphics

Andreas Papritz, Cornelia Schwierz and Martin Mächler

Institut für Terrestrische Ökosysteme
Seminar für Statistik

ETH Zürich

Autumn Semester 2013

0
based on work by Werner Stahel and Manuel Koller

0
slides rendered (by LATEX) on February 19, 2014

1 / 1

0.1 What is R?

I R is a software environment for statistical computing.
I R is based on commands. Implements the S language.
I There is an inofficial menu-based interface to R (R-Commander).
I Drawbacks of menus: difficult to record and document what you do
I Advantage of command scripts:

I documents an analysis and
I allows easy repetition with new data, options, ...

I R is free software. http://www.r-project.org
Supported operating systems: Linux, Mac OS X, Windows

I Lingua franca for exchanging statistical methods among
researchers

2 / 1

0.2 Other Statistical Software

I S+ (formerly “S-PLUS”) same programming language, commercial.
Features a GUI.

I SPSS: good for standard procedures.
I SAS: all-rounder, good for large data sets, complicated analyses.
I Systat: Analysis of Variance, easy-to-use graphics system.
I Excel: Good for getting (a small!) dataset ready. Very limited

collection of statistical methods. Not for serious data analysis!
I Matlab: Mathematical methods. Statistical methods limited.

Similar “paradigm”, less flexible structure.

3 / 1

0.3 Introductory Examples

I Print a data set that was read before by typing d.sport
weit kugel hoch disc stab speer punkte

OBRIEN 7.57 15.66 207 48.78 500 66.90 8824
BUSEMANN 8.07 13.60 204 45.04 480 66.86 8706
: : : : : : : :
: : : : : : : :
: : : : : : : :
CHMARA 7.75 14.51 210 42.60 490 54.84 8249

I Draw a histogram of the scores of variable the kugel by typing
hist(d.sport[,"kugel"]) .

I We call here the R function hist with the argument
d.sport[,"kugel"] .

I The function call opens a graphics window and displays the
frequency distribution of the scores for kugel .

4 / 1

I Scatter plot: type
plot(d.sport[,"kugel"], d.sport[,"speer"])

I First argument: x coordinates; second: y coordinates
I Many(!) optional arguments:

plot(d.sport[,"kugel"],d.sport[,"speer"],
xlab="shot put",ylab="javelin",pch=7)

I Scatter plot matrix: type
pairs(d.sport)

Every variable of d.sport is plotted against all other variables.

I Get a dataset from a text file on the web and assign a name to it
d.sport <- read.table(

"http://stat.ethz.ch/Teaching/Datasets/WBL/sport.dat")

5 / 1

0.4 Scripts and Editors

Instead of typing commands into the R console, you can generate
commands by an editor and then “send” them to R ... and later modify
(correct, expand) and send again.

Text editors with support for R
I R Studio (free software available for all major platforms:
http://rstudio.org/

I Tinn-R (only for Windows):
http://www.sciviews.org/Tinn-R/

I Emacs1 with ESS: http://ESS.r-project.org/2

I WinEdt (only for Windows): http://www.winedt.com/

1http://www.gnu.org/software/emacs/
2For Windows and Mac, on the Downloads tab, look for the “All-in-one installation” by

Vincent Goulet
6 / 1

The R Studio Window

The Window has 2× 2 panes; the top left pane will be our “R script file”
or “R file”, to be saved e.g., as ex1.R .

7 / 1

R Studio — Keyboard Shortcuts
Many shortcuts by which you work more efficiently in RStudio.
Menu Help→ Keyboard Shortcuts gives two pages of shortcuts.
A few of important ones are3:

Description Key
Indent Tab (at beginning of line)
Attempt completion Tab
Cut / Paste / Copy Ctrl + X / V / C
Insert assignment “arrow”← (2 letter <-) Alt + -
Run current line/selection Ctrl + Enter
Run from document beginning to current line Ctrl + Shift + B
Move cursor to beginning of line Home
Move cursor to end of line End
Save active document (“R file”) Ctrl + S
Show help F1

3on Mac, you can replace Ctrl by Command (= “Apple key” =)
8 / 1

0.5 Using R

I In the R console, you will see the prompt ‘ > ’ You can type a
command in the console (or better: write it in an R Script and send
it from there to the R console) and you will get a result and a new
prompt.
> hist(d.sport[,"kugel"])

>

I An incomplete statement is automatically continued on the the
following lines until the statement is syntactically complete (ie., R
has found the closing “)”)
> plot(d.sport[,"kugel"],
+
+ d.sport[,"speer"])

>

9 / 1

R statements

An R statement4 is typically either

I a name of an object −→ object is displayed
> d.sport

I a call to a function −→ graphical or numerical result is shown
> hist(d.sport[,"kugel"])

I an assignment
> a <- 2*pi/360

or
> mn <- mean(d.sport[,"kugel"])

which stores the result the numerical evaluation 2*pi/360 or
mean(d.sport[,"kugel"] in new objects with the names a
or mn , respectively.

4R “statement”: more precisely R “function call”
10 / 1

I a comment that is not processed
> # any text after a hash character on a line
> # is considered as comment and is not processed
> # by R

11 / 1

Calling R functions

I R functions typically have multiple arguments that all have names.
To see the complete list of arguments of a function (and their
default values) type args(functionname)
> args(var)

function (x, y = NULL, na.rm = FALSE, use)
NULL

I argument values may be passed to the function either by name
> var(x=d.sport[, "kugel"], na.rm=TRUE)

I or by position
> var(d.sport[, "kugel"], , TRUE)

I convention is to specify values for the first (and maybe second)
argument by position and for the remaining arguments by name
> var(d.sport[, "kugel"], na.rm=TRUE)

12 / 1

0.6 Reading/Writing Data from/to Files

Read a file in table format and create a data frame (= data matrix) from
it (with cases corresponding to lines and variables to columns):

I text (ASCII) files:
> read.table(file, header = FALSE, sep = "",

+ dec = ".", row.names, col.names,...)

I controlling columns delimiters and decimal “points”
> read.csv(file, sep = ",", dec=".",...)

> read.csv2(file, sep = ";", dec=",",...)

I Get all arguments and defaults by typing
?read.table

13 / 1

Some Examples

I Get a dataset from a text file on the web and assign a name to it:
> d.sport <- read.table(
+ "http://stat.ethz.ch/Teaching/Datasets/WBL/sport.dat",
+ header = TRUE)

I For data files with a one-line header (of column names), you need
to set the option header = TRUE ,
> d... <- read.table(... , header = TRUE)

I To download the file first to the local computer, R provides
> download.file(
+ "http://stat.ethz.ch/Teaching/Datasets/WBL/sport.dat",
+ destfile = "sport_data.txt")

I Use file browser (of the underlying operating system) to open the
file: s
> d.sport <- read.table(file.choose(), header = TRUE)

14 / 1

Reading Data (continued)

I Tab-separated text files:
> read.delim(file, sep = "\t", dec=".",...)

> read.delim2(file, sep = "\t", dec=",",...)

I Reading binary Rdata-files:
> load(file="myanalysis.Rdata")

> load(file="C:/myanalysis.Rdata")

15 / 1

Writing Data to Files

I Text-files:
> write.table(x, file = "", append = FALSE,

+ sep = " ",eol = "\n", na = "NA", dec = ".",

+ row.names = TRUE, col.names = TRUE, ...)

where x is the data object to be stored.
I Text files in CSV format:

> write.csv(...)

> write.csv2(...)

I binary Rdata-files:
> save(..., file, ascii = FALSE,...)

Example:
> x <- c(1:20)

> y <- d.sport[,"kugel"]

> save(x, y, file = "xy.Rdata")

16 / 1

0.7 R Workspace

I R stores all created “objects” in a user workspace. List the objects
by either ls() or equivalently, objects() :

> ls()

[1] "a" "d.sport" "mn"

I Objects have names like a, fun, d.sport
I Besides, R provides a huge number of functions and other objects
I You can see the function definition (“source”) by typing its name

without ():
> read.table

17 / 1

0.8 Getting Help

I Documentation on the arguments etc. of a function
(or dataset provided by the system):
> help(hist) or ?hist

On the help page, the section “See Also...” contains related
functions that could help you further.

I Search for a specific keyword:
> help.search("matrix") Lists packages and

functions related to or using “matrix”.
Note: Takes a long time when you have many extra R packages installed

I For many functions and data sets, examples are provided on the
help page (?matrix). You can execute them directly,
> example("matrix")

18 / 1

Resources on the internet

I R’s Project page http://www.r-project.org/5

I CRAN: use Swiss mirror6 http://cran.CH.r-project.org/:
Links to Search (several search possibilites), Task Views
(thematic collections of functions), Contributed (electronic
Documentation, Introductions) and FAQs.

The following list could be extended “infinitely”:
I http://search.r-project.org/: Search specific for R, also

accessed via R function RSiteSearch() . Functions, Help, etc.
I http://www.rseek.org/: A “Google-type” search specific for

R. Delivers Functions, Help Forums, etc.

5all URLs on this page are “clickable”
6the Swiss CRAN mirror is at stat.ethz.ch

19 / 1

0.9 Leaving an R Session

I Always save your script (*.R) files first.
I Then quit the R session by

> q()
in RStudio this is the same as using Ctrl-Q (menu item Quit
RStudio)

I You get the question:
Save workspace image? [y/n/c]:

If you answer ”y”, your objects will be available for your next
session.

I Note that we usually answer “n” to have a “clean” workspace when
you start again. To recreate your objects execute your R script
again.

20 / 1

Using R for Data Analysis and Graphics

1. Basics
In this Chapter you will ...

... find out about vectors (numerical, logical,
character)

... use R as a calculator

... learn how to select elements from a data set

... learn how to create and manipulate matrices

21 / 1

1.1 Vectors

Functions and operations are usually applied to
whole “collections” instead of single items,
including “vectors”, “matrices”, “data.frames” (d.sport)

I Numbers can be combined into “vectors”
by the function c() (“combine”):

> v <- c(4,2,7,8,2)
> a <- c(3.1, 5, -0.7, 0.9, 1.7)
> u <- c(v,a)
> u

[1] 4.0 2.0 7.0 8.0 2.0 3.1 5.0 -0.7 0.9 1.7

22 / 1

I Generate a sequence of consecutive integers:

> seq(1, 9)

[1] 1 2 3 4 5 6 7 8 9

Since such sequences are needed very often, a shorter form is
1:9 .

Sequence of evenly spaced numbers: Use argument by (default:
1):
> seq(0, 3, by=0.5)

[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0

I Repetition:
> rep(0.7, 5)

[1] 0.7 0.7 0.7 0.7 0.7

> rep(c(1, 3, 5), length=8)

[1] 1 3 5 1 3 5 1 3

23 / 1

I Basic functions for vectors:

Call, Example Description
length(v) length of a vector, number of

elements
sum(v) sum of all elements
mean(v) arithmetic mean
var(v) sample variance
range(v) range

These functions have additional optional arguments.
Check their help pages to find out more.

24 / 1

1.2 Arithmetic

Simple arithmetic is as expected:
I > 2+5

[1] 7

Operations: + - * / ˆ (Exponentiation)

See ?Arithmetic . A list of all available operators is found in
the R language definition manual7.

I Priorities as usual. Use parentheses!
> (2:5) ˆ 2

[1] 4 9 16 25

I These operations are applied to vectors elementwise.
> (2:5) ˆ c(2,3,1,0)

[1] 4 27 4 1

7http://cran.r-project.org/doc/manuals/R-lang.html#Operators

25 / 1

I Elements are recycled if operations are carried out with vectors
that do not have the same length:
> (1:6)*(1:2)

[1] 1 4 3 8 5 12

> (1:5) - (0:1) ## with a warning

[1] 1 1 3 3 5

Warning message:
longer object length is not a multiple of
shorter object length in: (1:5) - (0:1)

> (1:6)-(0:1) ## no warning

[1] 1 1 3 3 5 5

Be careful, there is no warning in the last case!

26 / 1

1.3 Character Vectors

I Character strings: "abc" , "nut 999"
Combine strings into vector of ”mode” character:
> names <- c("Urs", "Anna", "Max", "Pia")

I Length (in characters) of strings:
> nchar(names)

[1] 3 4 3 3

I String manipulations:
> substring(names,3,4)

[1] "s" "na" "x" "a"

> paste(names, "Z.")

[1] "Urs Z." "Anna Z." "Max Z." "Pia Z."

> paste("X",1:3, sep="")

[1] "X1" "X2" "X3"

27 / 1

1.4 Logical Vectors
I Logical vectors contain elements TRUE , FALSE , or NA
> rep(c(TRUE, FALSE), length=6)

[1] TRUE FALSE TRUE FALSE TRUE FALSE

I Often result from comparisons with relational operators,
see ?Comparison

< <= > >= == !=
> (1:5) >= 3

[1] FALSE FALSE TRUE TRUE TRUE

I operations with logical operators, see ?Logic
& (and), | (or), ! (not)

> a

[1] 3.1 5.0 -0.7 0.9 1.7

> i <- (2 < a) & (a < 5)

> i

[1] TRUE FALSE FALSE FALSE FALSE

28 / 1

1.5 Selecting elements
Select elements from vectors or data.frames by [i1] and [i1,i2] ,
where i1 and i2 are vectors with element indices
> v

[1] 4 2 7 8 2

> v[c(1,3,5)]

[1] 4 7 2

> d.sport[c(1,3,5),1:3]

weit kugel hoch
OBRIEN 7.57 15.66 207
DVORAK 7.60 15.82 198
HAMALAINEN 7.48 16.32 198

Drop elements, via negative indices:
> d.sport[-(3:14), c("kugel","punkte")]

kugel punkte
OBRIEN 15.66 8824
BUSEMANN 13.60 8706
CHMARA 14.51 8249

29 / 1

Elements of data.frames can be selected by names of columns or rows:

> d.sport[c("OBRIEN","DVORAK"), # 2 rows
+ c("kugel","speer","punkte")] # 3 columns

kugel speer punkte
OBRIEN 15.66 66.90 8824
DVORAK 15.82 70.16 8664

One can also select elements by logical vectors:
> a

[1] 3.1 5.0 -0.7 0.9 1.7

> a[c(TRUE,FALSE,TRUE,TRUE,FALSE)]

[1] 3.1 -0.7 0.9

Similarly use logical operations to select from a data.frame
> d.sport[d.sport[,"kugel"] > 16, c(2,7)]

kugel punkte
HAMALAINEN 16.32 8613
PENALVER 16.91 8307
SMITH 16.97 8271

30 / 1

1.6 Matrices
Matrices are “data tables” like data.frames, but they can only contain
data of a single type (numeric, character, logical, . . .)

I Generate a matrix (method 1):

> m1 <- matrix(1:6, nrow=2, ncol=3); m1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> m2 <- matrix(1:6, ncol=2, byrow=TRUE); m2

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

I Transpose: t(m1) equals m2 .

I Selection of elements as with data.frames:

> m1[2, 2:3]

[1] 4 6

31 / 1

I Generate a matrix (method 2):
> rbind(m1, -(1:3)) ## add row

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
[3,] -1 -2 -3

> cbind(m2, 100) ## add column

[,1] [,2] [,3]
[1,] 1 2 100
[2,] 3 4 100
[3,] 5 6 100

32 / 1

I Matrix multiplication:

> A <- m1 %*% m2; A

[,1] [,2]
[1,] 35 44
[2,] 44 56

I Functions for linear algebra are available, e.g., x = A−1b
> b <- 2:3
> x <- solve(A, b) ; x

[1] -0.83333 0.70833

> A %*% x # == b -- as 1-col. matrix (!)

[,1]
[1,] 2
[2,] 3

see ?solve , ?crossprod , ?qr , ?eigen , ?svd , . . . 8.

8or e.g. http://www.statmethods.net/advstats/matrix.html
33 / 1

Using R for Data Analysis and Graphics

2. Simple Statistics
In this Chapter you will ...

... learn how to obtain information on R objects

... repeat simple functions for descriptive statistics

... learn about factor variables

... compare groups of data

... perform a simple hypothesis test

34 / 1

2.1 Useful summary functions for objects
To get an overview of a data set and a summary of its variables:

I Dimension of data set

> dim(d.sport)

[1] 15 7

> nrow(d.sport); ncol(d.sport)

[1] 15

[1] 7

I First/Last few lines of a data set

> head(d.sport,n=2) ## default is n=6

weit kugel hoch disc stab speer punkte
OBRIEN 7.57 15.66 207 48.78 500 66.90 8824
BUSEMANN 8.07 13.60 204 45.04 480 66.86 8706

> tail(d.sport,n=1) ## default is n=6

weit kugel hoch disc stab speer punkte
CHMARA 7.75 14.51 210 42.6 490 54.84 8249

35 / 1

I Get the names of the variables of a data.frame

> names(d.sport)

[1] "weit" "kugel" "hoch" "disc" "stab" "speer"
[7] "punkte"

I Show the structure of an R object

> str(d.sport)

’data.frame’: 15 obs. of 7 variables:
$ weit : num 7.57 8.07 7.6 7.77 7.48 7.88 7.64 7.61 7.27 7.4..
$ kugel : num 15.7 13.6 15.8 15.3 16.3 ...
$ hoch : int 207 204 198 204 198 201 195 213 207 204 ...
$ disc : num 48.8 45 46.3 49.8 49.6 ...
$ stab : int 500 480 470 510 500 540 540 520 470 470 ...
$ speer : num 66.9 66.9 70.2 65.7 57.7 ...
$ punkte: int 8824 8706 8664 8644 8613 8543 8422 8318 8307 83..

> str(d.sport[, "kugel"])

num [1:15] 15.7 13.6 15.8 15.3 16.3 ...

> str(hist)

function (x, ...)

36 / 1

I Show a summary of the values of the variables in a data.frame
(min, quartiles and max for numeric variables, counts for factors –
see below)

> summary(d.sport)

weit kugel hoch disc
Min. :7.25 Min. :13.5 Min. :195 Min. :42.6
1st Qu.:7.47 1st Qu.:14.6 1st Qu.:196 1st Qu.:44.3
Median :7.60 Median :15.3 Median :204 Median :45.9
Mean :7.60 Mean :15.2 Mean :202 Mean :46.4
3rd Qu.:7.76 3rd Qu.:15.7 3rd Qu.:206 3rd Qu.:48.9
Max. :8.07 Max. :17.0 Max. :213 Max. :49.8

stab speer punkte
Min. :470 Min. :52.2 Min. :8249
1st Qu.:480 1st Qu.:57.4 1st Qu.:8278
Median :500 Median :64.3 Median :8318
Mean :498 Mean :62.0 Mean :8445
3rd Qu.:510 3rd Qu.:66.5 3rd Qu.:8628
Max. :540 Max. :70.2 Max. :8824

37 / 1

2.2 Simple Statistical Functions

I Estimation of a “location parameter”: mean(x) median(x)
> mean(d.sport[,"kugel"])

[1] 15.199

> median(d.sport[,"kugel"])

[1] 15.31

I Quantiles quantile(x)
> quantile(d.sport[,"kugel"])

0% 25% 50% 75% 100%
13.53 14.60 15.31 15.74 16.97

I Variance: var(x)

> var(d.sport[,"kugel"])

[1] 1.1445

38 / 1

I Correlation: cor(x,y) – Look at a plot before!
> plot(d.sport[,"kugel"], d.sport[,"speer"])

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0

55
60

65
70

d.sport[, "kugel"]

d.
sp

or
t[,

 "
sp

ee
r"

]

> cor(d.sport[,"kugel"], d.sport[,"speer"])

[1] -0.14645

39 / 1

I Correlation matrix:
> pairs(d.sport[,1:3])

weit

13.5 14.5 15.5 16.5

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

7.
4

7.
6

7.
8

8.
0

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

13
.5

14
.5

15
.5

16
.5

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

kugel
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

7.4 7.6 7.8 8.0

●

●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

195 200 205 210

19
5

20
0

20
5

21
0

hoch

> cor(d.sport[,1:3])

weit kugel hoch
weit 1.00000 -0.630171 0.337752
kugel -0.63017 1.000000 -0.092819
hoch 0.33775 -0.092819 1.000000

40 / 1

2.3 Factors

Groups, or categorial variables are represented by factors, e.g. ID of a
measurement station, type of species, type of treatment, etc.

In statistical analyses categorical variables MUST be coded as factors
to produce correct results (e.g. in analysis of variance or for regression).

−→ ALWAYS check your data (by str()) before starting an
analysis.

To produce a factor variable:
I use c(), rep(), seq() to define a numeric or character

vector
I and then the function as.factor() .

41 / 1

An example: Suppose the athletes listed in d.sport belong to 3
teams:

> teamnum <- rep(1:3,each=5)

> d.sport[,"team"] <- as.factor(teamnum)
> str(d.sport)

’data.frame’: 15 obs. of 8 variables:
$ weit : num 7.57 8.07 7.6 7.77 7.48 7.88 7.64 7.61 7.27 7.4..
$ kugel : num 15.7 13.6 15.8 15.3 16.3 ...
$ hoch : int 207 204 198 204 198 201 195 213 207 204 ...
$ disc : num 48.8 45 46.3 49.8 49.6 ...
$ stab : int 500 480 470 510 500 540 540 520 470 470 ...
$ speer : num 66.9 66.9 70.2 65.7 57.7 ...
$ punkte: int 8824 8706 8664 8644 8613 8543 8422 8318 8307 83..
$ team : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 2 2 2 2 2 ..

> levels(d.sport[,"team"])

[1] "1" "2" "3"

> levels(d.sport[,"team"]) <-
+ c("Zurich","New York","Tokyo")

42 / 1

> head(d.sport,n=10)

weit kugel hoch disc stab speer punkte team
OBRIEN 7.57 15.66 207 48.78 500 66.90 8824 Zurich
BUSEMANN 8.07 13.60 204 45.04 480 66.86 8706 Zurich
DVORAK 7.60 15.82 198 46.28 470 70.16 8664 Zurich
FRITZ 7.77 15.31 204 49.84 510 65.70 8644 Zurich
HAMALAINEN 7.48 16.32 198 49.62 500 57.66 8613 Zurich
NOOL 7.88 14.01 201 42.98 540 65.48 8543 New York
ZMELIK 7.64 13.53 195 43.44 540 67.20 8422 New York
GANIYEV 7.61 14.71 213 44.86 520 53.70 8318 New York
PENALVER 7.27 16.91 207 48.92 470 57.08 8307 New York
HUFFINS 7.49 15.57 204 48.72 470 60.62 8300 New York

> nlevels(d.sport[,"team"])

[1] 3

43 / 1

2.4 Simple Statistical Functions (cont’d)

> summary(d.sport)

weit kugel hoch disc
Min. :7.25 Min. :13.5 Min. :195 Min. :42.6
1st Qu.:7.47 1st Qu.:14.6 1st Qu.:196 1st Qu.:44.3
Median :7.60 Median :15.3 Median :204 Median :45.9
Mean :7.60 Mean :15.2 Mean :202 Mean :46.4
3rd Qu.:7.76 3rd Qu.:15.7 3rd Qu.:206 3rd Qu.:48.9
Max. :8.07 Max. :17.0 Max. :213 Max. :49.8

stab speer punkte team
Min. :470 Min. :52.2 Min. :8249 Zurich :5
1st Qu.:480 1st Qu.:57.4 1st Qu.:8278 New York:5
Median :500 Median :64.3 Median :8318 Tokyo :5
Mean :498 Mean :62.0 Mean :8445
3rd Qu.:510 3rd Qu.:66.5 3rd Qu.:8628
Max. :540 Max. :70.2 Max. :8824

44 / 1

I Count number of cases with same value:

> table(d.sport[,"team"])

Zurich New York Tokyo
5 5 5

I Cross-table

> table(d.sport[,"kugel"],d.sport[,"team"])

Zurich New York Tokyo
13.53 0 1 0
13.6 1 0 0
14.01 0 1 0
14.51 0 0 1
14.69 0 0 1

...

−→ The table function is not useful for numerical variables. Use
cut() (see next slide).

45 / 1

I Subdivide a numerical variable into intervals, e.g. for cross-tables
or plots: cut()

> table(cut(d.sport[,"kugel"], breaks=4),
+ d.sport[,"team"])

Zurich New York Tokyo
(13.5,14.4] 1 2 0
(14.4,15.2] 0 1 3
(15.2,16.1] 3 1 1
(16.1,17] 1 1 1

46 / 1

2.5 Comparison of Groups

Often in statistics, we want to compare measurements for different
groups.
d.sport now contains data for 3 different teams with 5 people each.

Let’s store the kugel results for each group separately:
> y1 <- d.sport[d.sport[,"team"]=="Zurich","kugel"]; y1

[1] 15.66 13.60 15.82 15.31 16.32

> y2 <- d.sport[d.sport[,"team"]=="New York","kugel"]
> y3 <- d.sport[d.sport[,"team"]=="Tokyo","kugel"]

Comparison of the different groups:
I look at a cross-table (see above)
I plot the distribution of the results in each group (better!)
I use a statistical test to compare groups
−→ Build hypotheses based on plots and prior knowledge!

47 / 1

Boxplot for several groups

> boxplot(y1,y2,y3, ylab="kugel", xlab="team",
+ names=levels(d.sport[,"team"]))

●

●

Zurich New York Tokyo

13
.5

14
.5

15
.5

16
.5

team

ku
ge

l

48 / 1

2.6 Hypothesis Tests

Do two groups differ in their ”location”? (t-test in Exercises)
No assumption about distribution of data:
−→Wilcoxon’s Rank Sum Test

> wilcox.test(y1,y3,paired=FALSE)

Wilcoxon rank sum test

data: y1 and y3
W = 15, p-value = 0.6905
alternative hypothesis: true location shift is not equal to 0

> wilcox.test(y1,y2,paired=FALSE)

Wilcoxon rank sum test

data: y1 and y2
W = 16, p-value = 0.5476
alternative hypothesis: true location shift is not equal to 0

49 / 1

Using R for Data Analysis and Graphics

3. Missing Values
In this Chapter you will ...

... see how missing values are specified

... learn how functions deal with missing values

... find out how to properly read in data with missing
values

50 / 1

3.1 Identifying Missing Values
In practice, some data values may be missing.

I Here, we fake this situation
> kugel <- d.sport[,"kugel"]
> kugel[2] <- NA
> kugel

[1] 15.66 NA 15.82 15.31 16.32 14.01 13.53 14.71 16.91
[10] 15.57 14.85 15.52 16.97 14.69 14.51

NA means ‘Not Available’ and typically indicates missing data.
—

I Which elements of kugel are missing?
> kugel == NA

[1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

This is not what we expected, we have to use is.na() instead

> is.na(kugel)

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[10] FALSE FALSE FALSE FALSE FALSE FALSE

51 / 1

3.2 Missing Values and Function Calls

I Applying functions to vectors with missing values:
> mean(kugel)

[1] NA

> mean(kugel, na.rm=TRUE)

[1] 15.313

I Other simple functions also have the na.rm argument
I For more sophisticated functions (e.g. wilcox.test), the

argument na.action defines how missing values are handled.
na.action=na.omit : omit cases with NAs

I Plotting functions normally work with NAs.

52 / 1

I Manually dropping the NA elements:
> kugel[!is.na(kugel)]

[1] 15.66 15.82 15.31 16.32 14.01 13.53 14.71 16.91 15.57
[10] 14.85 15.52 16.97 14.69 14.51

I more general method
> na.omit(kugel)

na.omit(df) drops rows of a data.frame df that contain
missing value(s).

53 / 1

3.3 Reading data sets with coded missing values

I How to specify missings when reading in data:
> d.dat <- read.table(..., na.strings=c(".","-999"))

Default: empty fields are taken as NA for numerical variables.

I ... or clean your data later:
> d.dat[d.dat[, "x"]==-999, "x"] <- NA

54 / 1

Using R for Data Analysis and Graphics

4. Write your own Function
In this chapter you will ...

... learn how to write your own functions

... and use them in other functions

... see a simple function example

55 / 1

Syntax:

fnname <- function(arg(s)) { statements }

A simple function: Get the maximal value of a vector and its index.

> f.maxi <- function(data) {
+ mx <- max(data, na.rm=TRUE) # get max element
+ i <- match(mx, data) # position of max in data
+ c(max=mx, pos=i) # result of function
+ }

Output of f.maxi is a named vector. The use of return() is optional.

> f.maxi(c(3,4,78,2))

max pos
78 3

(Note: R provides the function which.max)

56 / 1

This function can now be used in apply :
> apply(d.sport, 2, f.maxi)

weit kugel hoch disc stab speer punkte
max 8.07 16.97 213 49.84 540 70.16 8824
pos 2.00 13.00 8 4.00 6 3.00 1

Note: Use functions when you can. They make your code more legible
and simplify the analysis.

You can include the functions at the end of your main programme, or
collect all your functions in one R-script (e.g. myfunctions.R) and
make the functions available by
> source("myfunctions.R")

More about best-practices in programming will follow in the last block of
this lecture course.

R is open-source: Look at, and learn from, the existing functions!

57 / 1

Using R for Data Analysis and Graphics

5. Scatter- and Boxplots
In this lecture you will ...
. . . get a flavour of graphics systems available in R
. . . learn how to create scatter- and boxplots
. . . learn how to use formulae in plots
. . . learn how to add axis labels and titles to plots
. . . learn to select color, type and size of symbols
. . . learn how to control the scales of axes

58 / 1

5.1 Overview
Several R graphics functions have been presented so far:

> hist(d.sport[,"kugel"])

Histogram of d.sport[, "kugel"]

d.sport[, "kugel"]

F
re

qu
en

cy

13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0

0
1

2
3

4

59 / 1

> plot(d.sport[,"kugel"], d.sport[,"speer"])

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0

55
60

65
70

d.sport[, "kugel"]

d.
sp

or
t[,

 "
sp

ee
r"

]

60 / 1

> pairs(d.sport)

weit

13.5 15.5

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

44 48

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

55 65

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

7.
4

7.
8

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

13
.5

15
.5 ●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

kugel ●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

hoch
●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

19
5

20
5●

●

●

●

●

●

●

●

●

●●

●●●

●

44
48

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

disc
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●
●

●
●

●
●

●
●

●
●

●●

●

●●

●
●

●
●

●
●

●
●

●
●

●●

●

●●

●
●

●
●

●
●

●
●

●
●

●●

●

●●

●
●

●
●

●
stab ●

●
●

●
●

●●

●

● ●

●
●

●
●

●

47
0

51
0

●

●
●

●
●

●●

●

●●

●
●

●
●

●

55
65

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

speer
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

7.4 7.8

●

●
● ●●

●

●

●● ● ●● ●● ●

●

●
●● ●

●

●

● ●●● ● ●●●

195 205

●

●
● ●●

●

●

●●●●●●● ●

●

●
● ●●

●

●

● ●●●● ●●●

470 510

●

●
● ●●

●

●

●●● ●● ● ●●

●

●
●●●

●

●

● ● ●● ● ●●●

8300 8700

83
00

87
00

punkte

61 / 1

> boxplot(y1,y2,y3,ylab="kugel",xlab="team")

●

●

Zurich New York Tokyo

13
.5

14
.0

14
.5

15
.0

15
.5

16
.0

16
.5

17
.0

team

ku
ge

l

62 / 1

Many more “standard” graphics functions to come:

scatter.smooth , matplot , image , . . .
lines , points , text , . . .
par , identify , pdf , jpeg , . . .

Alternatives to “standard” graphics functions

⇒ functions of package lattice

⇒ functions of package ggplot2

63 / 1

An example using function xyplot of package lattice

> data(tips, package="reshape"); library(lattice)
> xyplot(tip˜total_bill|sex+smoker, data=tips)

total_bill

tip

2

4

6

8

10

10 20 30 40 50

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

Female
No

●

● ●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

Male
No

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●●●
●

●

●
●

●

●

●
●

●
●

●

●

Female
Yes

10 20 30 40 50

2

4

6

8

10

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

● ●

● ●
●

●

● ●

●

●

●●

●
●

●
●

●●

● ●

●

Male
Yes

64 / 1

Same plot using function qplot of package ggplot2

> library(ggplot2)
> qplot(x=total_bill, y=tip, data=tips,
+ facets=smoker˜sex)

Female Male

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●●

●
●

●

●

●●

●
●

●

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

N
o

Yes

10 20 30 40 50 10 20 30 40 50
total_bill

tip

65 / 1

Five kinds of standard R graphics functions:

I High-level plotting functions such as plot
⇒ to generate a new graphical display of data.

I Low-level plotting functions such as lines
⇒ to add further graphical elements to an existing graph.

I “Interactive” functions such as identify
⇒ to amend or collect information interactively from a
⇒ graph.

I “Device” control functions such as pdf
⇒ to manipulate windows and files that display or store
⇒ graphs.

I “Control” functions such as par
⇒ to control the appearance of graphs.

66 / 1

5.2 Scatterplot

Display of the values of two variables plotted against each other.

Syntax:

plot(x, y, main=c1, xlab=c2, ylab=c3, ...)

x ,y : two numeric vectors (must have same length)
c1, c2, c2: any character strings (must be quoted)
For the meaning of ... : ⇒ cf. ?plot

Example: Exploring Meuse data on heavy metals in soil

> library(sp); data(meuse)
> str(meuse)

67 / 1

’data.frame’: 155 obs. of 14 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : num 85 81 68 81 48 61 31 29 37 24 ...
$ lead : num 299 277 199 116 117 137 132 150 133 80 ...
$ zinc : num 1022 1141 640 257 269 ...
$ elev : num 7.91 6.98 7.8 7.66 7.48 ...
$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 ..
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 ..
$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 ..
$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 1..
$ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...

68 / 1

> plot(x=meuse[,"x"], y=meuse[,"y"])

●
● ●

●

●
●

●●

●
●

●
●

●
●

●
●

●

●
●

● ● ●
●

●
●●●

●
●

●

●
●●

●
●●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●
●●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

● ●
● ●
●

●
●

●
●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●
●

●●
●

●

178500 179000 179500 180000 180500 181000 181500

33
00

00
33

10
00

33
20

00
33

30
00

meuse[, "x"]

m
eu

se
[,

"y
"]

69 / 1

> plot(x=meuse[,"x"], y=meuse[,"y"], asp=1,
+ xlab="easting", ylab="northing",
+ main="position of soil sampling locations")

●
● ●

●

●
●

●●

●
●

●
●

●
●
●

●

●

●
●

●●●
●

●
●●●

●
●

●

●
●●

●
●●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●
●●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

● ●
●●
●

●
●

●
●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●
●

●●
●

●

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

position of soil sampling locations

easting

no
rt

hi
ng

70 / 1

Three additional variants ways to invoke plot :

I Plot of the values of a single vector against the indices of the vector
elements

> plot(meuse[,"zinc"], ylab="zinc")

●

●

●

●●●
●
●
●

●●
●

●

●

●

●

●
●●

●

●

●
●

●●●●●
●
●●●

●
●●

●

●

●
●

●

●

●●
●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●●

●

●
●
●

●

●●

●

●

●

●

●

●●
●

●●
●
●
●

●●

●
●
●
●●●●●●

●
●●●●●

●
●●

●●●
●●●

●

●●
●

●

●

●

●

●●●

●
●

●
●●

●●●●
●

●

●
●●●

●
●

●●

●

●
●
●

●

●

●

●

0 50 100 150

50
0

10
00

15
00

Index

zi
nc

I Scatterplot of two columns of a matrix or a dataframe

> plot(meuse[,c("x","y")], asp=1)

71 / 1

I Use of a formula, e.g. y x̃ , to specify the x- and y-variable out of a
data frame (cf. ?plot.formula)

> plot(zinc˜dist, data=meuse,
+ main="Zn vs. distance to river")

●

●

●

● ● ●
●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

● ● ●●●
●

●●●
●

● ●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●
●

● ● ●●
●

●
● ● ● ●●

●
●●

● ●
●●

● ●

●

● ●
●

●

●

●

●

● ●
●

●
●

●

●●

●●● ●

●

●

●

●
●●

●
●

● ●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

50
0

10
00

15
00

Zn vs. distance to river

dist

zi
nc

72 / 1

5.3 Digression: Statistical Models, Formula Objects

Statistics is concerned with relations between “variables”.
Prototype: Relationship between target variable Y
and explanatory variables X1, X2, ... ⇒ Regression.

I The symbolic notation of such a relation: Y ∼ X1 + X2
reads as “ Y is modelled as an (additive) function of X1 and X2 .
This symbolic notation is also an R object (of class formula)
(The notation is also used in other statistical packages.)

73 / 1

I Further example for use of a formula:
> plot(punkte˜kugel+speer, data=d.sport)

●

●

●
●

●

●

●

●
●●

● ● ●
●●

13.5 14.5 15.5 16.5

83
00

85
00

87
00

kugel

pu
nk

te

●

●

●
●

●

●

●

●
● ●

● ● ●
●●

55 60 65 70

83
00

85
00

87
00

speer

pu
nk

te

gives 2 scatterplots with punkte (on vertical axis) plotted against
kugel and speer (on horizontal axes), respectively.

74 / 1

5.4 Arguments common to many graphics functions

I main="..." , xlab="..." , ylab="..."

"..." : any character string (must be quoted!)
⇒ to set title and labels of axes (cf. ?title)

I log="x" , log="y" , log="xy"

⇒ for logarithmic scaling of axes (cf. ?plot.default)

I xlim=c(xmin,xmax) , ylim=c(ymin,ymax) ,
xmin, xmax, ymin, ymax: numeric scalars
⇒ to set range of values displayed (cf. ?plot.default)

I asp=n

n : numeric scalar
⇒ to set aspect ratio of axes (cf. ?plot.window

75 / 1

Common arguments of plot (continued):
I type=c

c: a single character such as "p" for points, "l" for lines, "b"

for points and lines, ”n” for an “empty” plot, etc.
⇒ for selecting type of plot (cf. ?plot)

I pch=i or pch=c

i : an integer (vector); c: a single character such as "a" (or a
vector of single-character strings)
⇒ for choosing symbols (cf. ?points)

I cex=n

n : a numeric (vector)
⇒ for choosing size of symbols (cf. ?plot.default)

I col=i or col=color

color : (vector with) keyword(s) such as "red" , "blue" , etc
⇒ for choosing color of symbols (cf. ?plot.default and
colors())

76 / 1

Example: logarithmic axes scale

> plot(zinc˜dist, data=meuse, log="y")

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

20
0

50
0

10
00

20
00

dist

zi
nc

77 / 1

Example: setting the range of axes

> plot(zinc˜dist, data=meuse,
+ xlim=c(-1,2), ylim=c(100,3000))

●

●

●

● ● ●
●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

●●●●●
●

●●●
●

●●

●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●●

●

●
●
●

●

●●

●

●

●

●

●

●
●
●

●
●

●
●

●

●●

●
●

●
●

●● ●●
●

●
●● ● ●●

●
●●

●●
●●

● ●

●

●●
●

●

●

●

●

● ● ●

●
●

●
●●

●●● ●
●

●

●

●●●

●
●

●●

●

●
●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
50

0
10

00
15

00
20

00
25

00
30

00

dist

zi
nc

78 / 1

Example: connecting points by lines (cf. ?plot)

> x <- c(0,1,1,0); y <- c(0,0,1,1)
> plot(x=x,y=y,type="p",xlab="",ylab="",pch=letters[1:4])
> plot(x=x,y=y,type="l",xlab="",ylab="",col="red")

a b

cd

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

79 / 1

Example: choosing symbol type, color and size (cf. ?points)

> plot(log10(zinc)˜sqrt(dist), data=meuse,
+ pch=3, col="red", cex=3)

0.0 0.2 0.4 0.6 0.8

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

sqrt(dist)

lo
g1

0(
zi

nc
)

80 / 1

Example: choosing symbol type, color and size

> plot(1:25, pch=1:25, cex=2, col=1:8)

●

●

●

●

●
●

●

5 10 15 20 25

5
10

15
20

25

Index

1:
25

81 / 1

Example: choosing symbol type, color and size
> plot(y˜x, data=meuse, asp=1, ## [asp]ect ratio := 1
+ col=ffreq, cex=sqrt(zinc)/10)

●●●●
●●

●●
● ●●
●

●●●●●
●●●●●●

●
●●●

●●

●

●
●●●
●●

●●●
●

●●
●

●
●
●
●
●

●●

●
●●●●●

●
●
●●●●

●

●
●●●●●●●●

●●
●

●

●

●
●

●
●

●
● ●●

●
●●

●

●●
●

● ●
●

●

●

●
●

●

●

●
●●

●
●

●●
●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

● ●
●

●●
●●● ●

●
●

●● ●

●

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

x

y

82 / 1

5.5 Boxplot

Syntax:

boxplot(x1,x2, ..., notch=l1, horizontal=l2, ...)

x1,x2, . . . : numeric vectors
l1 (logical): controls whether “notches” are added to (coarsely) test
whether medians of x1,x2, ... significantly differ (5%
significance level)

l2 (logical): controls whether horizontal boxplots are generated

. . . : many more arguments (cf. ?boxplot)

83 / 1

Example: a single boxplot

> boxplot(meuse[,"zinc"])

●

●

●

●
●

●

50
0

10
00

15
00

84 / 1

Example: a single boxplot with some decoration

> boxplot(x=meuse[,"zinc"], horizontal=TRUE, range=2,
+ col="lightyellow", border="red",
+ xlab="zinc content", main="Zinc Meuse data")

●●

500 1000 1500

Zinc Meuse data

zinc content

85 / 1

Example: variant to generate boxplots of several variables

> boxplot(meuse[,c("zinc","lead","copper","cadmium")],
+ log="y", ylab="metal content [mg/kg]", col = 2:5)

●●
●
●●●

●

●●●●●

●●
●
●●●
●

●

●
●
●●

●●
●

●
●
●
●●
●

●

zinc lead copper cadmium

5e
−

01
5e

+
00

5e
+

01
5e

+
02

m
et

al
 c

on
te

nt
 [m

g/
kg

]

86 / 1

Example: boxplot of one variable for several levels of a factor
> boxplot(zinc˜ffreq, data=meuse, log="y", notch=TRUE,
+ names= c("often", "intermediate", "rarely"),
+ xlab= "flooding", ylab= "zinc [mg/kg]")

●

●

●●

●

often intermediate rarely

20
0

50
0

10
00

20
00

flooding

zi
nc

 [m
g/

kg
]

87 / 1

In this lecture you have . . .
. . . got a flavour of graphics systems available in R

⇒ “standard” graphics, lattice , ggplot2

. . . learnt how to create scatterplots and boxplots
⇒ functions plot , boxplot

. . . learnt how to use formulae for generating plots

. . . learnt how to connect points in a scatterplot by lines
⇒ argument type

. . . learnt how to add axis labels and titles to plots
⇒ arguments main , xlab , ylab

. . . learnt to select color, type and size of symbols
⇒ arguments col , pch , cex

. . . learnt how to control the scales of axes
⇒ arguments asp , log , xlim , ylim

88 / 1

Using R for Data Analysis and Graphics

6. Controlling the visual aspects
of a graphic
In this lecture you will learn . . .
. . . how to add points and lines to an existing plot,
. . . how to amend a plot by additional text and a

legend,
. . . about the par function for fine-tuning your

graphics,
. . . how to arrange several plots in one graphic,
. . . how to manage colors,
and in this week’s exercise series you will explore ad-
ditional high-level plotting functions

89 / 1

6.1 Adding further points and lines to a graphic
Use points to add further points to a graph created before by a
high-level plotting function such as plot .

Syntax:

points(x=x, y=y, pch=i1, col=i2 or col=color, cex=n)

x , y : two numeric vectors
i1, i2: integers (scalars or vectors)
color : color name (scalar or vector)
n: numeric (scalar or vector)

Remarks:

I ± same arguments as for plot
I points can also be used with formula and data

arguments (cf. ?points.formula)

90 / 1

Example: adding Cu data to a plot of lead˜dist for Meuse data

> plot(lead˜dist, data=meuse, log="y",
+ ylim=range(c(copper,lead)))
> points(copper˜dist, data=meuse, col="red")

●
●

●

● ●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●

● ●

●

●
●● ●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●
●●

●●

●

●

● ● ●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●
●

●

●●

●
●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

20
50

10
0

20
0

50
0

dist

le
ad

●●

●

●

●

●

●
●

●

●●●

●

●
●

●
●
●●

●

●

●●

●
●

●

●
●

● ●

●

●

● ● ●

●

●

●
●

●

●

●● ●

● ●

●

●
●

●

●

●

●
●
●

●

●●

●
●●●

●●
● ● ●

●

●
● ●

●
●

●
● ●

●●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●
●

●●
●

●

●

●● ● ● ●

●
●

●

●
●

●

●●
●

●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●●
●

●

●

● ●

●

●

●

●

91 / 1

Use lines to add lines that connect successive points to an existing
plot.

Syntax:

lines(x=x, y=y, lty=i or lty=line type, lwd=n, ...)

x , y : two numeric vectors
i: integer (scalar) to select line type (cf. ?par)
line type: integer or keyword such as "dotted" to select line
type (cf. ?par)
n: numeric scalar to select line width
. . . : further arguments such as col to select line color

Remarks:

I ± same arguments as for plot and points
I lines can also be used with formula and data arguments

(cf. ?lines.formula)

92 / 1

Example: adding outline of river Meuse to plot of sampling locations

> data(meuse.riv)
> str(meuse.riv)
num [1:176, 1:2] 182004 182137 182252 182314 182332 ...

> plot(y˜x, data=meuse, asp=1, pch=16)
> lines(meuse.riv, lty="dotdash", lwd=2, col="blue")

●● ● ●
●

●
●●

● ●●
●

●
●
●

●
●

●
●

●●●●

●
●●●

●●

●

●
●●●

●●
●

●●●
●
●●

●

●
●
●
●
●

●●

●●●●●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●●

●●
●●
●

●
●
●

●

●

●

●

●
●

●
●

●

● ●●
●

●●

●

●●
●

● ●
●

●

●

●
●

●

●
●

●●

●
●

●●
●

●

●

●
●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●
●

●●
●●

●
●

●
●

●●
●

●

177000 178000 179000 180000 181000 182000 183000

33
00

00
33

10
00

33
20

00
33

30
00

x

y

93 / 1

Use abline to add straight lines to an existing plot.

Syntax:

abline(v=x, ...)

abline(h=y, ...)

abline(a=n1, b=n1, ...)

x : coordinate(s) where to draw vertical straight line(s) (scalar or
vector)
y : coordinate(s) where to draw horizontal straight line(s) (scalar or
vector)
n1, n2: numeric scalars for intercept and slope of straight line
. . . : further arguments such as col , lty , lwd

Remark:

I the straight lines extend over the entire plot window

94 / 1

Example: adding straight lines to a plot

> plot(lead˜dist, data=meuse)
> abline(h=c(200, 500), col=c("orange", "red"),
+ lty="dashed", lwd=2)
> abline(v=0.2, col=4, lty=3, lwd=5)
> abline(a=500, b=-500, lty="dotdash", lwd=2,
+ col="black")

●
●

●

● ●
●●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

● ● ●●●
●

●
●

●
● ● ●

●

●

●●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●
●●

●●
●

●
● ● ●

●●
●
●

●
●●●●

● ●

●

● ●
●●

●

●

●

● ● ●

●
●

●

●●

●●● ●

●

●

●
●

●●

●

●●
●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

10
0

20
0

30
0

40
0

50
0

60
0

dist

le
ad

95 / 1

Further useful low-level plotting functions

I segments adds arbitrary line segments to an existing plot, cf.
?segments

I arrows adds arrows to a plot (± same syntax as segments ,
cf. ?arrows)

I polygon adds a polygon to an existing plot, cf. ?polygon

96 / 1

6.2 Amending plots by additional text and legends
Points in a scatterplot are labelled by text .

Syntax:

text(x=x, y=y, labels=c , pos=i, ...)

x , y : two numeric vectors
c: vector of character strings with the text to label the points
i: integer (vector) to control whether labels are plotted below (1), to
the left (2), above (3) or to the right (4) of the points (scalar or
vector)
. . . : further arguments such as col and cex

Remarks:

I x and y may specify arbitrary coordinates within the plot window
I one can also use formula (along with a data argument) in
text (cf. plot.formula)

97 / 1

Example: labelling sample points of Meuse data by landuse info

> plot(y˜x, data=meuse, asp=1, pch=16)
> text(y˜x, data=meuse, labels=landuse, pos=4, cex=0.7)

●
● ●

●

●
●

●●

●
●

●
●

●
●
●

●

●

●
●

●●●
●

●
●●●

●
●

●

●
●●

●
●●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●
●●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

● ●
●●
●

●
●

●
●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●
●

●●
●

●

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

x

y

AhAhAhGa
Ah

Ga
AhAb

Ab WFh
Ag

W
Ah
Ah

W
W

W
W
AmAmAg

Ah
WWAb

Ag
Ah

Ag

B
AgAhB

BAb
Ab

AmW
W

Am
GaW

Ah

Ah
Am
Ah
Ah
Bw

BwAb

AhWWWW
Fw

Fw
Fw

W
W

Fw
W

Ah
W

W
Ah

Fw
Bw

Ab
AbW

WAh
WW
Ah

Am
W

W
W

W

W

W

Ah
W

W
W

Ah

Am AmAm
Am

W
W

Am

AmAm
Ah

W W
SPO

W

Am

Ah
Fw

Ah

Ah
Fw

STADEN

Fw
Ah

AhAh
W

STA

Bw

Ah
Aa

WTv

Fw
Ah

Ah
Ah
Am

Am

Am

W

Ah

W

Aa

Am

Am
Am

W

WW
Ah

Ah Fw
W

BwBw
WW

Ah
Am

Ah
Am

AhAh
W

W

98 / 1

More sophisticated text annotation is added by legend to a plot.

Syntax:

legend(x=x, y=y, legend=c, pch=i1, lty=i2 ,...)

x , y : coordinates where the legend should be plotted
c: vector of character strings with labels of categories
i1, i2: vector of integers with type of plotting symbol or line type for
categories
. . . : further arguments such as col and cex

Remarks:

I The position of the legend is either specified by x and y or by a
keyword such as "topright" , "bottomleft" , etc. (cf.
legend for allowed keywords)

99 / 1

Example: legends annotating flooding frequency and zinc
concentration for Meuse data

> plot(y˜x, data=meuse, asp=1, col=ffreq,
+ cex=sqrt(zinc)/15)
> legend("topleft", pch=1, col=c("black","red","green"),
+ legend=c("frequent","intermediate","rare"))
> legend("bottomright", pch=1, title="Zn mg/kg",
+ legend=zn.label <- c(100,200,500,1000,2000),
+ pt.cex=sqrt(zn.label)/15, bty="n")

●●●●
●●

●●
● ●●
●

●●●●●●●●●●●
●
●●●

●●
●

●
●●●
●●●

●●●●
●●

●

●●
●
●
●

●●

●●●●●●●●●●
●●
●●●●

●

●
●●●●●●●●

●●
●●

●

●

●

●
●

●
●

●
● ●●

●
●●

●

●●
●

● ●
●

●

●

●
●

●

●

●
●●

●
●

●●
●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

● ●
●

●●
●●● ●

●
●

●● ●

●

177000 179000 181000 183000

33
00

00
33

20
00

x

y

●

●

●

frequent
intermediate
rare

●

●

●

●
●

Zn mg/kg

100
200
500
1000
2000

100 / 1

6.3 Controlling the visual aspects of a graphic
I So far we have used the arguments pch , col , cex , lty and
lwd to tailor the visual appearance of graphics when calling high-
and low-level plotting functions.

I There are many more arguments to control the visual aspects of
graphics: adj , ann , . . . , yaxt , cf. help page of par .

I Default values of these arguments are queried for the active
graphics device by

> par()

$adj
[1] 0.5

$ann
[1] TRUE

. . .
$ylbias
[1] 0.2

101 / 1

I Most of the arguments of par are effective in high-level plotting
function calls.

I Many work also for low-level plotting functions.
I New default values of nearly all arguments are set for the active

device by par :

> par(c("pch", "col"))

$pch
[1] 1

$col
[1] "black"

> par(pch=4, col="red")

> par(c("pch", "col"))

$pch
[1] 4

$col
[1] "red"

102 / 1

and they remain effective as long as they are not changed

> plot(y˜x, data=meuse, asp=1)
> lines(meuse.riv, lwd=2, col="blue")

177000 178000 179000 180000 181000 182000 183000

33
00

00
33

10
00

33
20

00
33

30
00

x

y

103 / 1

Arguments and functions for the following tasks will be considered in
more detail:

I placing several graphs onto a graphics device
I controlling color

For other aspects of tailoring the visual appearance of graphs (choice of
text font, . . .), see help page of par .

104 / 1

6.4 Placing several figures in one graphic
The arrangement of multiple plots in one graphic can be controlled by
the arguments mfrow and mfcol of par .

Syntax:

par(mfrow=c(i1,i2)) or par(mfcol=c(i1,i2))

i1, i2: two integer scalars for the number of rows and columns into
which the graphic device is split

Remarks:

I the graphics device is split into a matrix of i1 ×i2 figure regions;
“rows” and “columns” have constant height and width

I successive calls of high-level plotting function populate the figure
regions sequentially by plots

I sequence of plotting is either by rows (mfrow) or by columns
(mfcol)

I alternatives: functions layout or split.screen

105 / 1

Example: multiple plots in same graphics (by rows)
> par(mfrow=c(2,2))
> plot(y˜x, data=meuse, main="Meuse data")
> plot(zinc˜dist, data=meuse, main="Zn˜dist")
> hist(meuse[,"zinc"])
> boxplot(zinc˜ffreq, data=meuse, main="Zn˜ffreq")

●● ● ●
●●

●●
● ●●●

●●●●
●

●
●

●●●●

●
●●●●●

●

●●● ●●●
●●●

●
●

●●
●

●
●
●
●
●

●●

●●●●●
● ● ●

●
●

●
●

●
●

●
●

●
●

●●●
● ●
●●
●

●
●

●●

●

●

●

●
●

●
●

●
● ●●

●

●●

●
●●●

● ● ●
●

●
● ●

●
●

●
●●

●●
●●

●
●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●●
●

● ●
●

●●
●●● ●

● ●
●● ●

●

178500 179500 180500 181500

33
00

00
33

20
00

Meuse data

x

y ●

●

●

● ● ●
●

●
●

●●
●

●

●

●

●

●
●●

●

●

●
●

● ● ●●●
●

●●●
●

● ●
●

●

●
●

●

●

●●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
● ●

●
●

●●

●

●●

●

●

●

●

●

●●
●

●●
●

●
●

●●

●
● ●
●●● ●●●

●
● ● ● ●●

●
●●

●●●●● ●

●

●●
●

●

●

●

●

● ● ●

●
●

●
●●

●●● ●
●

●

●
●●●

●
●

● ●

●

● ●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

50
0

10
00

15
00

Zn~dist

dist

zi
nc

Histogram of meuse[, "zinc"]

meuse[, "zinc"]

F
re

qu
en

cy

0 500 1000 1500 2000

0
10

20
30

40

●

●

●●

●

1 2 3

50
0

10
00

15
00

Zn~ffreq

106 / 1

Example: multiple plots in same graphics (by columns)
> par(mfcol=c(2,2))
> plot(y˜x, data=meuse, main="Meuse data")
> plot(zinc˜dist, data=meuse, main="Zn˜dist")
> hist(meuse[,"zinc"])
> boxplot(zinc˜ffreq, data=meuse, main="Zn˜ffreq")

●● ● ●
●●

●●
● ●●●

●●●●
●

●
●

●●●●

●
●●●●●

●

●●● ●●●
●●●

●
●

●●
●

●
●
●
●
●

●●

●●●●●
● ● ●

●
●

●
●

●
●

●
●

●
●

●●●
● ●
●●
●

●
●

●●

●

●

●

●
●

●
●

●
● ●●

●

●●

●
●●●

● ● ●
●

●
● ●

●
●

●
●●

●●
●●

●
●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●●
●

● ●
●

●●
●●● ●

● ●
●● ●

●

178500 179500 180500 181500

33
00

00
33

20
00

Meuse data

x

y

●

●

●

● ● ●
●

●
●

●●
●

●

●

●

●

●
●●

●

●

●
●

● ● ●●●
●

●●●
●

● ●
●

●

●
●

●

●

●●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
● ●

●
●

●●

●

●●

●

●

●

●

●

●●
●

●●
●

●
●

●●

●
● ●
●●● ●●●

●
● ● ● ●●

●
●●

●●●●● ●

●

●●
●

●

●

●

●

● ● ●

●
●

●
●●

●●● ●
●

●

●
●●●

●
●

● ●

●

● ●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

50
0

10
00

15
00

Zn~dist

dist

zi
nc

Histogram of meuse[, "zinc"]

meuse[, "zinc"]

F
re

qu
en

cy

0 500 1000 1500 2000

0
10

20
30

40

●

●

●●

●

1 2 3

50
0

10
00

15
00

Zn~ffreq

107 / 1

6.5 More on colors (and size)

The color (and size) of title, axes labels and tick mark labels is
controlled by separate col.xxx (and cex.xxx) arguments passed
to high-level functions or to par .

Color Size
title col.main cex.main
axes labels col.lab cex.lab
tick mark labels col.axis cex.axis

108 / 1

Example: settting the color and the size of text annotation

> par(col.main="magenta", cex.main=3,
+ col.lab="green", cex.lab=2,
+ col.axis="red", cex.axis=1.5)
> plot(zinc˜dist, meuse, main="ugly colors!")

●

●

●

● ● ●
●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

● ● ●●●
●

●●●
●

● ●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●
●

●● ●●
●

●
● ● ● ●●

●
●●

●●
●●

● ●

●

● ●
●

●

●

●

●

● ●
●

●
●

●

●●

●●● ●

●

●

●

●
●●

●
●

● ●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

50
0

10
00

15
00

ugly colors!

dist

zi
nc

109 / 1

The background and foreground colors of a plot are queried and set by
the arguments bg and fg of par .

Syntax:

par(fg=color,bg=color)

color : valid colors (integer scalar or keyword)

Remarks:
I the device region is colored by the background color; the

background color can be set only by par(bg=color)
I fg=color can be used as argument for high-level plotting functions

to set the color of the axes and the box around the plot region
I par(fg=color) sets in addition also the default color for points

and lines plotted subsequently in the plot region
I par(fg=color) does not affect the color of text annotation; these

colors must be set by the arguments col.main , col.axis ,
col.lab

110 / 1

Example: setting fore- and background colors

> par(mfrow=c(1,2))
> par(bg="darkblue", col.main="red", col.lab="cyan",
+ col.axis="yellow")
> plot(zinc˜dist, meuse, main="many colors", fg="yellow")
> par(fg="yellow")
> plot(zinc˜dist, meuse, main="many colors")

●

●

●

● ● ●
●

●
●

●●
●

●

●

●

●

●
●●

●

●

●
●

● ● ●●●
●

●●●
●

● ●

●

●

●
●

●

●

●●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
● ●

●

●
●
●

●

●●

●

●

●

●

●

●●
●

●●
●

●
●

●●

●
●

●
●●● ●●●

●
● ● ● ●●

●
●●

●●●●● ●

●

●●
●

●

●

●

●

● ● ●

●
●

●
●●

●●● ●
●

●

●
●●●

●
●

● ●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

50
0

10
00

15
00

many colors

dist

zi
nc ●

●

●

● ● ●
●

●
●

●●
●

●

●

●

●

●
●●

●

●

●
●

● ● ●●●
●

●●●
●

● ●

●

●

●
●

●

●

●●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
● ●

●

●
●
●

●

●●

●

●

●

●

●

●●
●

●●
●

●
●

●●

●
●

●
●●● ●●●

●
● ● ● ●●

●
●●

●●●●● ●

●

●●
●

●

●

●

●

● ● ●

●
●

●
●●

●●● ●
●

●

●
●●●

●
●

● ●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

50
0

10
00

15
00

many colors

dist

zi
nc

111 / 1

Colors can be either specified by integer or keywords. The color scale,
i.e., the mapping of the integer numbers to particular colors, are queried
and set by the function palette .

Syntax:

palette(colorscale)

colorscale: an optional character vector with valid colors

Remarks:
I palette() shows the current color scale
I color vectors are preferably constructed by the built-in functions

such as rainbow , heat.colors , . . . (cf. ?rainbow) or by
the more flexible function colorRampPalette (cf.
?colorRamp).

I palette("default") restores the default color scale

112 / 1

Example: querying and setting color scales

> palette()

[1] "black" "red" "green3" "blue" "cyan" ...

> par(mfrow=c(1,2))

> plot(1:16, col=1:16, pch=16, cex=3)
> palette(rainbow(16))
> plot(1:16, col=1:16, pch=16, cex=3)

●●●●●●●●●●●●●●●●

5 10 15

5
10

15

Index

1:
16

●●●●●●●●●●●●●●●●

5 10 15

5
10

15
Index

1:
16

> palette("default"); palette()

[1] "black" "red" "green3" "blue" "cyan" ...

113 / 1

Good R programming practice:

reset argument controlling the visual appearance of a graphics at end to
the previous values,

> old.par <- par(mfrow = c(2,2), mgp = c(2,1,0))
> for(i in 1:4){
+ curve(sin(i * pi* x), main = paste("sin(",i,"pi x)"))
+ }
> par(old.par)
> par("mfrow")# areback to (1, 1)

[1] 1 1

114 / 1

In this lecture you have learnt . . .
. . . how to add additional data to an existing plot by

⇒ functions points and lines

. . . how to draw horizontal and vertical straight lines by
⇒ function abline

. . . how to annotate points in a scatterplot by
⇒ function text

. . . how to add a legend by
⇒ function legend

115 / 1

. . . to query and set default values for arguments controlling the visual
aspects of a graphic

⇒ function par

. . . that most of the par arguments can be specified “on the fly” in
high-level and low-level plotting functions

. . . how to arrange several plots in one graphic
⇒ arguments mfrow , mfcol of function par

. . . how to control color
⇒ arguments col.xxx , fg , bg
⇒ functions palette , rainbow , etc.

116 / 1

Using R for Data Analysis and Graphics

Introduction Part 2
in the second part of the Lecture “Using R ...” we

... deepen understanding for using functions

... learn about loops and control structures

... get to know further R building blocks (objects,
classes, attributes)

... work with lists and apply

... see how to tailor the behaviour of R

... find out about packages and where to get help

117 / 1

Using R for Data Analysis and Graphics

7. Programming in R - Functions
and Control Structures
In this chapter you will learn about . . .
. . . How to write a function (repetition from part I)
. . . Error messages, debugging etc
. . . Control structures, i.e. loops, if–else, etc.

118 / 1

7.1 Writing Functions
Syntax: fnname <- function(arg(s)) { R statements }

A simple function: Get the maximum value of a vector and its index.

> f.maxi <- function(data) {
+ mx <- max(data, na.rm=TRUE) # get max element
+ i <- match(mx, data) # position of max in data
+ c(max=mx, pos=i) # result of function
+ }

Output of f.maxi is a named vector. By default, the the result of the last
evaluated R statement is returned by a function call. Use of an explicit
return() statement is optional.

> f.maxi(c(3,4,78,2))

max pos
78 3

(Note: R provides the function which.max)

119 / 1

Optional arguments and argument default values

Many functions have optional arguments with default values.

For instance look at function code of hist() or ?hist :

1 function (x, breaks = "Sturges", freq = NULL, probability = !freq,
2 include.lowest = TRUE, right = TRUE, density = NULL, angle = 45,
3 col = NULL, border = NULL, main = paste("Histogram of", xname),
4 xlim = range(breaks), ylim = NULL, xlab = xname, ylab, axes = TRUE,
5 plot = TRUE, labels = FALSE, nclass = NULL, warn.unused = TRUE,
6 ...)
7 {

120 / 1

Example Use optional argument my.names to specify names of
result vector of f.maxi

> f.maxi.names <- function(data,my.names=c("max","pos")){
+ mx <- max(data, na.rm=TRUE) # get max element
+ i <- match(mx, data) # position of max in data
+ res <- c(mx, i) # result of function
+ names(res) <- my.names # naming of result
+ res # or return(res)
+ }

Default values are used if actual argument my.names not specified
> f.maxi.names(c(3,4,78,2))

max pos
78 3

but may be over-written by specifying values for my.names
> f.maxi.names(c(3,4,78,2), my.names=c("Maximum","Index"))

Maximum Index
78 3

121 / 1

Querying if a formal argument has be specified

Use missing() to query if a formal argument has been specified.

Example
> f.maxi.names2 <- function(data,my.names=c("max","pos")){
+ cat("’my.names’ missing?", missing(my.names), "\n")
+ mx <- max(data, na.rm=TRUE)
+ res <- c(mx, match(mx, data))
+ names(res) <- my.names; res }

> f.maxi.names2(c(3,4,78,2))

’my.names’ missing? TRUE
max pos
78 3

> f.maxi.names2(c(3,4,78,2), my.names=c("Maximum","Index"))

’my.names’ missing? FALSE
Maximum Index

78 3

122 / 1

Unspecified list of arguments of a function
A function may accept arbitrary arguments if the function definition
contains ... as formal argument.

Example:
> myplot <- function(x, y, ...){
+ plot(x, ...)
+ }
> myplot(1:10, col=1:10, pch=1:10)

●

●

2 4 6 8 10

2
4

6
8

Index

x

123 / 1

Printing the definition of a function
I Type the name of the function (without parentheses) for its

definition
> f.maxi

function(data) {
mx <- max(data, na.rm=TRUE) # get max element
i <- match(mx, data) # position of max in data
c(max=mx, pos=i) # result of function

}

I Of course, this works for all “built-in” R functions
> sd

function (x, na.rm = FALSE)
sqrt(var(if (is.vector(x)) x else as.double(x), na.rm = na.rm))
<bytecode: 0x37249f0>
<environment: namespace:stats>

I or to see only its formal arguments type str(fnname)
> str(sd)

function (x, na.rm = FALSE)

124 / 1

I Function arguments and their defaults are also shown on help(.)
page, in section Usage: .
Try ?sd

Summary: R functions

I with several argument often have defaults,
I < argname > = < default >
I “visible” from the help page’s Usage: section or
str().

I Functions return the last evaluated expression,
typically, the last line.

I return() is hence optional and not often used.
I look at the function definition by just (auto-) print() ing it

125 / 1

7.2 Error Handling

I Error messages are often helpful ...
sometimes, you have no clue – mostly, if they occur
in a function that was called by a function ...

I Show the “stack” of function calls:
> traceback()

I Ask an experienced user ...
I If you write your own functions:

I use print statements (if simple code)
I ?browser
I ?debug
I options(error=recover) calls browser when an

error occurs.
I browser() as a statement in the function: stops execution and

lets you inspect all variables.

126 / 1

7.3 Control Structures: Loops
Loops are basic for programming. Most important one: for
Syntax: for (i in ...){ commands}

Example: The Fibonacci series. Illustration of the first 6 elements:

and applications:

127 / 1

Example: Fibonacci Series
Goal: Calculate the first twelve elements of the Fibonacci series.

> fib <- c(1,1)
> for(i in 1:10)
+ fib <- c(fib, fib[i]+fib[i+1])
> fib

[1] 1 1 2 3 5 8 13 21 34 55 89 144

> fib <- c(1,1)
> for(i in 1:6){
+ fib <- c(fib, fib[i]+fib[i+1])
+ print(fib)
+ }

[1] 1 1 2
[1] 1 1 2 3
[1] 1 1 2 3 5
[1] 1 1 2 3 5 8
[1] 1 1 2 3 5 8 13
[1] 1 1 2 3 5 8 13 21

128 / 1

Note
Instead of for loops, you can (and should!) often use more elegant
and efficient operations,

I e.g., instead of

> n <- length(x); y <- x
> for(i in 1:n)
+ y[i] <- x[i] * sin(pi * x[i])

use simply

> Y <- x * sin(pi * x)

Of course, that’s equivalent:
> identical(Y, y)

[1] TRUE

I In more complicated cases, it is often advisable to apply()
functions instead of for(.){...} , see next week!

129 / 1

7.4 Control Structures: if – else
I Conditional evaluation: if(.){...} [else{...}]

Syntax:
if(logical) A or
if(logical) A1 else A2

E.g., For the Fibonacci construction loop,
> fib <- c(1,1)
> for(i in 1: 100) {
+ fib <- c(fib, fib[i]+fib[i+1])
+ if (fib[i+2] > 5000) break
+ }
> fib

[1] 1 1 2 3 5 8 13 21 34 55 89 144 233
[14] 377 610 987 1597 2584 4181 6765

I with optional else
> if(sum(y) > 0) log(sum(y)) else "negative sum"

[1] "negative sum"

130 / 1

Digression: other loop constructs – break

Use break for forced leaving of a loop

> plot(1:10)
> ## "left-click" to read coordinates and
> ## plot further points, stop by "right-clicking"
> for(i in 1:10000) {
+ loc <- locator(1,type="l")
+ if(length(loc) < 1)
+ break ## "right-clicking" leaves loop
+ points(loc, pch=19)
+ }

131 / 1

Control Structures: if – else (continued)
if(cond) A always returns a value:

> u <- 1
> x1 <- if(uˆ2 == u) "are the same" ; x1

[1] "are the same"

> u <- 2
> x2 <- if(uˆ2 == u) "are the same" ; x2

NULL

if(cond) A when cond is false, has value NULL

What is “NULL” ?? Not the same as ‘0’:
> length(NULL) ## has length zero

[1] 0

> is.null(NULL) ## query whether an output is NULL

[1] TRUE

> c(2,NULL,pi) ## does not show up in vectors

[1] 2.0000 3.1416

132 / 1

Examples

I A (simplistic!) example of computing “significance stars” from
P-values:
> myStar <- function(x) { if(x < .01) "**" else
+ if(x < .05) "*" else "" }

> myStar(0.024)

[1] "*"

> myStar(0.2)

[1] ""

> myStar(0.002)

[1] "**"

133 / 1

I > tst3 <- function(x) {
+ if(x %% 3 == 0) paste("HIT:", x) else format(x %% 3)
+ }
> c(tst3(17), tst3(27))

[1] "2" "HIT: 27"

I > tst4 <- function(x) {
+ if(x < -2) "pretty negative"
+ else if(x < 1) "close to zero"
+ else if(x < 3) "in [1, 3)" else "large"
+ }

x tst4(x)
[1,] "-5" "pretty negative"
[2,] "-1" "close to zero"
[3,] "0" "close to zero"
[4,] "1" "in [1, 3)"
[5,] "2" "in [1, 3)"
[6,] "3" "large"
[7,] "4" "large"

134 / 1

Another example using missing and ...
> myplot <- function(x, y=NA, ...){
+ if(missing(y)) boxplot(x, ...)
+ else plot(x, y, ...)
+ }
> par(mfcol=c(1, 2))
> myplot(1:10, border="blue", col="cyan")
> myplot(1:10, 1:10, col=1:10, pch=1:10)

2
4

6
8

●

●

2 4 6 8 10

2
4

6
8

x

y

135 / 1

Using R for Data Analysis and Graphics

8. Objects in R
In this chapter you will learn about . . .
. . . different R objects and classes
. . . handling Dates and Times
. . . manipulating strings

136 / 1

8.1 R Objects

The basic building blocks of R
are called “objects”. – They come in “classes”:
I numeric, character, factor . . . one-dim. sequence of numbers,

strings, . . . called atomic9 vectors
I matrix two dimensional array of numbers, strings, . . .
I array (1–, 2–, 3–, . . .)dimensional; 2-dim. array =: matrix.
I data.frame two dimensional, (numbers, “strings”, factors, . . .)
I formula specifying (regression, plot, . . .) “model”
I function also an object!
I list very general collection of objects,→ see below
I call, . . . and more

Determine class with class().

9see help page ?is.atomic for more
137 / 1

array — k -dimensional matrix

Matrices are 2-dimensional, an array can be k -dimensional (k ≥ 1).
E.g., 3-dimensional, a “stack of matrices”:

> a <- array(1:30, dim=c(3,5,2))
> a

, , 1

[,1] [,2] [,3] [,4] [,5]
[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15

, , 2

[,1] [,2] [,3] [,4] [,5]
[1,] 16 19 22 25 28
[2,] 17 20 23 26 29
[3,] 18 21 24 27 30

138 / 1

array — (2)

> a <- array(1:30, dim=c(3,5,2))
> class(a)

[1] "array"

Query the class of an object with is...., result is logical:
> is.array(a)

[1] TRUE

> dim(a[1, ,]) # the first slice of a[]

[1] 5 2

> m <- a[, 2,] ; m

[,1] [,2]
[1,] 4 19
[2,] 5 20
[3,] 6 21

> is.matrix(m) # a "slice" of a 3-d array is a matrix

[1] TRUE

139 / 1

There are specific functions to examine the kind of an object.In
particular the “inner” structure of an object, is available by str() :

> str(d.sport)

’data.frame’: 15 obs. of 7 variables:
$ weit : num 7.57 8.07 7.6 7.77 7.48 7.88 7.64 7.61 7.2..
$ kugel : num 15.7 13.6 15.8 15.3 16.3 ...
$ hoch : int 207 204 198 204 198 201 195 213 207 204 ...
$ disc : num 48.8 45 46.3 49.8 49.6 ...
$ stab : int 500 480 470 510 500 540 540 520 470 470 ...
$ speer : num 66.9 66.9 70.2 65.7 57.7 ...
$ punkte: int 8824 8706 8664 8644 8613 8543 8422 8318 83..

> class(d.sport[,"weit"])

[1] "numeric"

> str(m)

int [1:3, 1:2] 4 5 6 19 20 21

> str(a)

int [1:3, 1:5, 1:2] 1 2 3 4 5 6 7 8 9 10 ...

140 / 1

8.2 Apply on Dataframes and Arrays

Loops can and should be avoided in many cases!
I Apply a function to each column (or row) of a data.frame or matrix

or array:
> apply(d.sport, 2, mean)

weit kugel hoch disc stab speer
7.5967 15.1987 202.0000 46.3760 498.0000 61.9947
punkte

8444.6667

Second argument: 1 for “summary” of rows, 2 for columns, 3
for 3rd dimension, ...

141 / 1

I If the function needs more arguments, they are provided as
additional arguments:
> apply(d.sport, 2, mean, trim=0.3)

weit kugel hoch disc stab speer
7.5914 15.1871 201.8571 46.4171 495.7143 63.0000
punkte

8397.8571

> apply(a,3,mean)

[1] 8 23

More on apply next week.

142 / 1

8.3 Factors (repeated from part I)

Groups, or categorial variables are represented by factors.
Examples: IDs of measurement stations, types of species, types of
treatment, etc.

To produce a factor variable:
I use c(), rep(), seq() to define a numeric or character

vector
I and then the function as.factor()
I Note: internally factors use integers as grouping-ID, but levels can

be defined, to label the groups.

143 / 1

An example: Suppose the athletes listed in d.sport belong to 3
teams:

> teamnum <- rep(1:3,each=5)

> d.sport[,"team"] <- as.factor(teamnum)
> str(d.sport)

’data.frame’: 15 obs. of 8 variables:
$ weit : num 7.57 8.07 7.6 7.77 7.48 7.88 7.64 7.61 7.2..
$ kugel : num 15.7 13.6 15.8 15.3 16.3 ...
$ hoch : int 207 204 198 204 198 201 195 213 207 204 ...
$ disc : num 48.8 45 46.3 49.8 49.6 ...
$ stab : int 500 480 470 510 500 540 540 520 470 470 ...
$ speer : num 66.9 66.9 70.2 65.7 57.7 ...
$ punkte: int 8824 8706 8664 8644 8613 8543 8422 8318 83..
$ team : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 2 2 2..

> class(d.sport[,"team"])

[1] "factor"

144 / 1

> levels(d.sport[,"team"])

[1] "1" "2" "3"

> nlevels(d.sport[,"team"])

[1] 3

> levels(d.sport[,"team"]) <-
+ c("Zurich","New York","Tokyo")

> head(d.sport,n=10)

weit kugel hoch disc stab speer punkte team
OBRIEN 7.57 15.66 207 48.78 500 66.90 8824 Zurich
BUSEMANN 8.07 13.60 204 45.04 480 66.86 8706 Zurich
DVORAK 7.60 15.82 198 46.28 470 70.16 8664 Zurich
FRITZ 7.77 15.31 204 49.84 510 65.70 8644 Zurich
HAMALAINEN 7.48 16.32 198 49.62 500 57.66 8613 Zurich
NOOL 7.88 14.01 201 42.98 540 65.48 8543 New York
ZMELIK 7.64 13.53 195 43.44 540 67.20 8422 New York
GANIYEV 7.61 14.71 213 44.86 520 53.70 8318 New York
PENALVER 7.27 16.91 207 48.92 470 57.08 8307 New York
HUFFINS 7.49 15.57 204 48.72 470 60.62 8300 New York

145 / 1

> #How many cases per factor level?
> table(d.sport[,c("team")])

Zurich New York Tokyo
5 5 5

> #aggregate according to factor
> aggregate(punkte˜team,d.sport,sum)

team punkte
1 Zurich 43451
2 New York 41890
3 Tokyo 41329

146 / 1

Functions handle factors differently to numeric variables. Example:
plot() generates boxplot:
> plot(hoch˜team,d.sport)

Zurich New York Tokyo

19
5

20
0

20
5

21
0

team

ho
ch

147 / 1

Note: In statistical analyses categorical variables MUST be coded as
factors to produce correct results (e.g. in analysis of variance or for
regression).
−→ ALWAYS check your data (by str()) before starting an

analysis.

148 / 1

8.4 Dates and Times

Dates and Times are also R objects with specific classes. Get the
System Date

> (dd <- Sys.Date())

[1] "2014-02-19"

> class(dd)

[1] "Date"

and System Time

> (tt <- Sys.time())

[1] "2014-02-19 11:12:45 CET"

> str(tt) #in seconds

POSIXct[1:1], format: "2014-02-19 11:12:45"

> class(tt)

[1] "POSIXct" "POSIXt"

149 / 1

Classes ”Date”, ”POSIXlt” and ”POSIXct” represent calendar dates and
times (to the nearest second).

Class ”POSIXct” represents the (signed) number of seconds since the
beginning of 1970 (in the UTC timezone) as a numeric vector.

Class ”POSIXlt” is a named list of vectors representing sec, min, hour,
mday, mon, year, . . .

More information on ?DateTimeClasses.

150 / 1

Conversion between time zones:
> #Note: need to supply suitable file path
> # "/usr/share/zoneinfo/zone.tab" first
> as.POSIXlt(Sys.time(), "GMT")

[1] "2014-02-19 10:12:45 GMT"

> #what time in time zone of Seattle?
> as.POSIXlt(Sys.time(), , tz = "PST8PDT")

[1] "2014-02-19 02:12:45 PST"

> #and in Denver?
> as.POSIXlt(Sys.time(), , tz = "America/Denver")

[1] "2014-02-19 03:12:45 MST"

151 / 1

Special operations and functions are defined for Dates and Times. See
?Ops.Date or ?Ops.POSIXt. Some examples:

> dd +20 # 20 days from now

[1] "2014-03-11"

> tt + 3600 # an hour later

[1] "2014-02-19 12:12:45 CET"

> #How many days to christmas?
> difftime(dd,"2013-12-25 8:00")

Time difference of 55.708 days

> #convert character to Date/Time
> (xx <- strptime("2100-12-25",format="%Y-%m-%d"))

[1] "2100-12-25"

> #Which day of the week is Christmas 2100?
> weekdays(xx)

[1] "Saturday"

152 / 1

8.5 Manipulating strings
Often string manipulation is necessary or desireable. A list from Uwe
Ligges’s book10 below shows some of the available functions. Look at
the respective help pages for more information. A few examples follow
next.

Function / Operator Description
cat() print text in console or to file
deparse() convert an expression to a string
formatC very general formatting possibilities
grep() search for (sub-)string in vectors
match(), pmatch() search for string matches
nchar() get number of characters in a string
parse() convert to an expression
paste() paste several strings together
sub(), gsub() replace (parts of) strings
substring() extract sub-strings
toupper(),tolower() change to upper or lower case letters
strsplit() split strings, result is a list

10Uwe Ligges: Programmieren in R, Springer.
153 / 1

Examples String Manipulation

Combine numeric and text output for messages or to write to files:
> pp <- round(2*pi,2)
> cat("Two times Pi is:", pp, "\n", sep = "\t")

Two times Pi is: 6.28

> cat("Two times Pi is:", pp, "\n", sep = "\t",
+ file = "myOutputMessage.txt")

Useful string manipulations:
> nam <- "Peter Pan" # create string
> nchar(nam) # how many letters

[1] 9

> ## substitute parts of strings (useful for Umlauts etc):
> (nam2 <- gsub("Peter","Pete",nam))

[1] "Pete Pan"

> toupper(nam2) # convert to upper case

[1] "PETE PAN"

154 / 1

Examples String Manipulation (cont’d)
Create numbered filenames:
> filenames <- paste("File", 1:3, ".txt", sep = "")

Exchange a matching string with a replacement. The original ist NOT
overwritten. Note the “protection” (escape) "\\" for special characters
such as ”.”
> sub("File","Datei",filenames)

[1] "Datei1.txt" "Datei2.txt" "Datei3.txt"

> sub("\\.","_",filenames)

[1] "File1_txt" "File2_txt" "File3_txt"

Find which entries in a vector match a given string:
> grep("ile",filenames)

[1] 1 2 3

> grep("3",filenames)

[1] 3

> filenames[grep("3",filenames)]

[1] "File3.txt"

155 / 1

Using R for Data Analysis and Graphics

9. Lists and Apply
In this chapter you will learn about . . .
. . . how to work with lists
. . . the efficient use of apply

156 / 1

9.1 Lists

Objects of any kind can be collected into a list:

> v <- c(Hans=2, Fritz=-1, Elsa= 9, Trudi=0.4, Olga=100.)
> list(v, you="nice")

[[1]]
Hans Fritz Elsa Trudi Olga
2.0 -1.0 9.0 0.4 100.0

$you
[1] "nice"

As with c(...) , all arguments are collected,
names can be given to the components.

157 / 1

Lists are an important (additional) class of objects,
since most statistical functions produce a list
that collects the results.
> hi.k <- hist(d.sport[,"kugel"], plot=FALSE)
> hi.k
$breaks
[1] 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0

$counts
[1] 2 1 4 1 4 1 2

$density
[1] 0.26667 0.13333 0.53333 0.13333 0.53333 0.13333 0.26667

$mids
[1] 13.75 14.25 14.75 15.25 15.75 16.25 16.75

$xname
[1] "d.sport[, \"kugel\"]"

$equidist
[1] TRUE

attr(,"class")
[1] "histogram"

158 / 1

I Get a sublist of the list: []
> hi.k[2:3]

$counts
[1] 2 1 4 1 4 1 2

$density
[1] 0.26667 0.13333 0.53333 0.13333 0.53333 0.13333 0.26667

or hi.k[c("breaks","intensities")]

Note: hi.k["counts"] is a list with one component.

I Get a component: [[]]
> hi.k[[2]]

[1] 2 1 4 1 4 1 2

> identical(hi.k[[2]], hi.k[["counts"]])

[1] TRUE

or also hi.k$counts . These components are all vectors.

159 / 1

I Hint: A data.frame is a list with additional attributes.
−→ Single columns (variables) can be selected by $:
> k <- d.sport$kugel
> ## select elements from it:
> d.sport$kugel[4:6] # but preferrably

[1] 15.31 16.32 14.01

> d.sport[4:6, "kugel"] # treat it like a matrix

[1] 15.31 16.32 14.01

160 / 1

I Make a list of subsets of a vector:
> split(1:7, c(1, 1, 2, 3, 3, 2, 1))

$‘1‘
[1] 1 2 7

$‘2‘
[1] 3 6

$‘3‘
[1] 4 5

I unlist concatenates all elements of all components into a
single vector.
> unlist(hi.k[1:2])

breaks1 breaks2 breaks3 breaks4 breaks5 breaks6 breaks7
13.5 14.0 14.5 15.0 15.5 16.0 16.5

breaks8 counts1 counts2 counts3 counts4 counts5 counts6
17.0 2.0 1.0 4.0 1.0 4.0 1.0

counts7
2.0

161 / 1

Examples String Manipulation (cont’d)
Create numbered filenames:
> filenames <- paste("File", 1:3, ".txt", sep = "")

Split the string at specified separator; Note the “protection” (escape)
"\\" for special characters such as ”.”
> unlist(strsplit(filenames[1],"\\."))

[1] "File1" "txt"

Personalize file names - for user name ”Pete Pan”, see last lecture:
> (nn <- unlist(strsplit(nam2, " ")))# split string at " "

[1] "Pete" "Pan"

> # get first letters as new string:
> (nn2 <- paste(sapply(nn, function(x) substring(x,1,1)),
+ collapse = ""))

[1] "PP"

> (myfiles <- paste(unlist(strsplit(filenames,".txt")),
+ "_", nn2, ".txt", sep=""))

[1] "File1_PP.txt" "File2_PP.txt" "File3_PP.txt"

162 / 1

Functions for vectorized Programming
Function / Operator Description
%*% Vector product / matrix multiplication
%x%, kronecker(X,Y, FUN="*") Kronecker product; the latter applies an arbi-

trary bivariate function FUN
%o%, outer(X,Y, FUN="*") “outer” product; the latter applies any FUN().
sum(v), prod(v), all(L), . . . Sum, product, . . . of all elements
colSums(), rowSums() Fast column / row sums
colMeans(), rowMeans() Fast column / row means
apply() column- or row-wise application of function on

matrices and arrays
lapply() elementwise application of function on lists,

data frames, vectors
sapply() simplified lapply: returns simple vector, ma-

trix, . . . (if possible)
tapply() table producing *apply, grouped by factor(s)
vapply() (more robust, slightly faster) version of

sapply
rapply() recursive version of lapply
mapply() multivariate version of lapply

163 / 1

List–Apply: lapply() — the most important one

I Compute the list mean for each list element
> # generate list
> x <- list(a = 1:10, beta = exp(-3:3),
+ logic = c(TRUE,FALSE,FALSE,TRUE))
> # list with mean of each list element
> lapply(x,mean)

$a
[1] 5.5

$beta
[1] 4.5351

$logic
[1] 0.5

164 / 1

List - Apply sapply()

I sapply = [S]implified lapply
The result is unlist()ed into a vector, named and possibly
reshaped into a matrix11.
> sapply(x,mean)# a named numeric vector

a beta logic
5.5000 4.5351 0.5000

11or higher array, with argument simplify = "array"
165 / 1

I Median and quartiles for each list element
> lapply(x, quantile, probs = 1:3/4)
$a
25% 50% 75%
3.25 5.50 7.75

$beta
25% 50% 75%

0.25161 1.00000 5.05367

$logic
25% 50% 75%
0.0 0.5 1.0

> sapply(x, quantile)
a beta logic

0% 1.00 0.049787 0.0
25% 3.25 0.251607 0.0
50% 5.50 1.000000 0.5
75% 7.75 5.053669 1.0
100% 10.00 20.085537 1.0

166 / 1

I Example with linear regressions (“Anscombe” data)

> data(anscombe) # Load the data
> #small data set with 4 target variables and covariates
> ans.reg <- vector(4, mode = "list")# empty list
> # Store 4 regressions (y_i vs x_i) in list:
> for(i in 1:4){
+ form <- as.formula(paste("y",i," ˜ x",i, sep=""))
+ ans.reg[[i]] <- lm(form, data = anscombe)
+ }
> lapply(ans.reg, coef)# a list, of length-2 vectors

> sapply(ans.reg, coef)# simplified into 2 x 4 matrix

[,1] [,2] [,3] [,4]
(Intercept) 3.00009 3.0009 3.00245 3.00173
x1 0.50009 0.5000 0.49973 0.49991

167 / 1

Digression: Random Numbers
I The *apply() functions are particularly useful for large data

sets and with simulation results, often generated using random
numbers

I “Random” numbers are generated by a deterministic function.
Examples are runif(), rnorm()

I Nevertheless, two identical calls give different results.
> runif(4)

[1] 0.864278 0.421576 0.399071 0.081312

> runif(4)

[1] 0.121530 0.993147 0.080135 0.793373

I For reproducibility, e.g. in simulation studies, use ...
> set.seed(27); runif(1)

[1] 0.97175

> set.seed(27); runif(1)

[1] 0.97175

168 / 1

Functions in sapply, lapply
Can use “anonymous” functions directly inside apply - functions.

Example: Retrieve i-th col/row of all matrices that are elements of a list
> set.seed(1234)# define list of matrices
> sl <- list(A= matrix(rnorm(25,10,1),ncol=5),
+ B= matrix(runif(20),ncol=5))
> #retrieve 3rd column from both matrices
> sapply(sl,function(x){x[,3]})
$A
[1] 9.5228 9.0016 9.2237 10.0645 10.9595

$B
[1] 0.174650 0.848392 0.864834 0.041857

Note: sapply creates different types of objects depending on output.
Try out

> class(sapply(sl, function(x) x[2,])) # a matrix
> class(sapply(sl, function(x) x[,3])) # a list, because
> # matrices in sl do not have same no of rows

169 / 1

tapply – a “ragged” array

Summaries over groups of data:
> n <- 17
> fac <- factor(rep(1:3, length = n), levels = 1:4)
> fac # last level not present:

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Levels: 1 2 3 4

> table(fac)

fac
1 2 3 4
6 6 5 0

> tapply(1:n, fac, sum)

1 2 3 4
51 57 45 NA

170 / 1

tapply() simplifies the result by default, when possible,
> tapply(1:n, fac, sum, simplify = FALSE) # simplify=FALSE : non-default
$‘1‘
[1] 51

$‘2‘
[1] 57

$‘3‘
[1] 45

$‘4‘
NULL

> tapply(1:n, fac, quantile) # simplification not possible
$‘1‘

0% 25% 50% 75% 100%
1.00 4.75 8.50 12.25 16.00

$‘2‘
0% 25% 50% 75% 100%

2.00 5.75 9.50 13.25 17.00

$‘3‘
0% 25% 50% 75% 100%
3 6 9 12 15

$‘4‘
NULL

171 / 1

tapply — by()
by(data,index,fun,...)

Summaries by groups of data, uses tapply() internally!
> # help(warpbrakes)
> # split by tension-levels
> by(warpbreaks[, 1:2], warpbreaks[,"tension"], summary)
> # split by tension-and-wool levels
> by(warpbreaks[, 1], warpbreaks[, -1], summary)
warpbreaks[, "tension"]: L

breaks wool
Min. :14.0 A:9
1st Qu.:26.0 B:9
Median :29.5
Mean :36.4
3rd Qu.:49.2
Max. :70.0

warpbreaks[, "tension"]: M

breaks wool
Min. :12.0 A:9
1st Qu.:18.2 B:9
Median :27.0
Mean :26.4
3rd Qu.:33.8
Max. :42.0

warpbreaks[, "tension"]: H

breaks wool
Min. :10.0 A:9
1st Qu.:15.2 B:9
Median :20.5
Mean :21.7
3rd Qu.:25.5
Max. :43.0

172 / 1

tapply — aggregate()

Summaries over groups of data:
I > # help(sleep)
> aggregate(sleep[,"extra"],
+ list(sleep[,"group"]), median)

Group.1 x
1 1 0.35
2 2 1.75

Result is a data.frame .
Many groups −→ Analyze summaries using new data.frame !

I Conceptually similar to by() (and hence tapply()).
Compare output of by() above to
> aggregate(warpbreaks[,1:2],
+ list(Tension=warpbreaks[,"tension"]),
+ summary)

173 / 1

Using R for Data Analysis and Graphics

10. More R: Objects, Methods,...
In this chapter you will learn . . .
. . . more on objects, their classes, attributes and

(S3) methods
. . . more on functions
. . . using options() (and par())

174 / 1

10.1 R Objects - this slide repeated from above

Slide from ??: The basic building blocks of R
are called ”objects”. – They come in ”classes”:
I numeric, character, factor . . . one-dim. sequence of numbers,

strings, . . . called atomic12 vectors
I matrix two dimensional array of numbers, strings, . . .
I array (1–, 2–, 3–, . . .)dimensional; 2-dim. array =: matrix.
I data.frame two dimensional, (numbers, ”strings”, factors, . . .)
I formula specifying (regression, plot, . . .) ”model”
I function also an object!
I list very general collection of objects,→ see below
I call, . . . and more

Determine class with class().

12see help page ?is.atomic for more
175 / 1

Example

> class(d.sport)

[1] "data.frame"

This information and more, namely the ”inner” structure of an object, is
available by str()

> str(d.sport)

’data.frame’: 15 obs. of 7 variables:
$ weit : num 7.57 8.07 7.6 7.77 7.48 7.88 7.64 7.61 7.2..
$ kugel : num 15.7 13.6 15.8 15.3 16.3 ...
$ hoch : int 207 204 198 204 198 201 195 213 207 204 ...
$ disc : num 48.8 45 46.3 49.8 49.6 ...
$ stab : int 500 480 470 510 500 540 540 520 470 470 ...
$ speer : num 66.9 66.9 70.2 65.7 57.7 ...
$ punkte: int 8824 8706 8664 8644 8613 8543 8422 8318 83..

176 / 1

10.2 Object Oriented Programming

I Many functions do rather different things in dependence of the
class of their first argument.

I Most prominently: print() or plot() are such ”generic”
functions.

I Generic functions examine the class of their first argument and
then call a ”method” (function) accordingly.

I Example:

> plot(speer˜kugel, data=d.sport)

calls the formula method of the plot generic function, as
class(speer˜kugel) is of class "formula"

177 / 1

Generic Functions
I The most basic generic function is print().

I Example:

> class(r.t <- wilcox.test(extra˜group, data=sleep))

[1] "htest"

> r.t

Wilcoxon rank sum test with continuity correction

data: extra by group
W = 25.5, p-value = 0.06933
alternative hypothesis: true location shift is not equal to 0

> r.t (or print(r.t)) calls the htest method of the
print generic function, as class(r.t) is of class "htest"

I Note: The print() function is called whenever no explicit
function is called: ⇒ R is ”auto – printing”.

178 / 1

Generic Functions — Finding all methods

I Use methods(gnrc) to find all available methods for a generic
function gnrc

I Example: Find all available methods for the generic function
print() 13

> methods(print)

[1] "print.acf" "print.anova" "print.aov"
[4] "print.aovlist" "print.ar" "print.Arima"
[7] "print.arima0" "print.AsIs" "print.aspell"

......

> length(methods(print)) # ** MANY **
[1] 181

13strictly, the ”S3 methods” only. S3 is the first ”informal” object system in S and R;
the ”formal” object system, ”S4”, defines classes and methods formally, via
setClass(), setMethod() etc; and lists methods via showMethods() instead of
methods()

179 / 1

I Find all available methods for generic function plot() :
> methods(plot)

[1] plot.acf* plot.data.frame*
[3] plot.decomposed.ts* plot.default
[5] plot.dendrogram* plot.density

......

> length(methods(plot)) # ** MANY **
[1] 28

I From these, we have already used implicitly
I plot.default, the default method,
I plot.formula, in plot(y˜x, ...),
I plot.factor, (which gave boxplots),
I plot.data.frame, giving a scatter plot matrix, as with pairs(),

etc

180 / 1

Generic Functions and Methods— Finding information
I Suppose, we want to learn what arguments the function mean()

accepts;

I from the above we use
> str(mean)

function (x, ...)

> mean

function (x, ...)
UseMethod("mean")
<bytecode: 0x33bd978>
<environment: namespace:base>

which seems not very helpful!

I Let’s see if mean() is a generic function
> methods(mean)

[1] mean.Date mean.default mean.difftime mean.POSIXct
[5] mean.POSIXlt

181 / 1

I ok, mean.default() seems to be what we are looking for,
now let’s explore it
> str(mean.default)

function (x, trim = 0, na.rm = FALSE, ...)

> mean.default

function (x, trim = 0, na.rm = FALSE, ...)
{

if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
.......

<bytecode: 0x306c8b8>
<environment: namespace:base>

I Of course, we could have looked at help page: ?mean

I help pages of generic functions list in section Usage first the
argument(s) of the generic and then under ## Default S3
method: those of the default method

182 / 1

Generic Functions — Finding all methods for a class

I Use methods(class="cls") to find all the available
methods for a given class cls

I Example: Find all available methods for the class matrix

> methods(class="matrix")

[1] plot.acf* plot.data.frame*
[3] plot.decomposed.ts* plot.default
[5] plot.dendrogram* plot.density
.......

Non-visible functions are asterisked

> length(methods(class="matrix")) # ** MANY **
[1] 14

183 / 1

I Apart from basic classes like matrix , formula , list , etc,
many functions, notably those fitting a statistical model, return their
result as a specific class .

I Example: Linear regression (−→ function lm())
> r.lm <- lm(speer˜kugel, data=d.sport)
> class(r.lm)

[1] "lm"

I These classes come with ”methods” for print() , plot() ,
summary() , etc
> summary(r.lm)
> plot(r.lm) ## explained in another lecture

Call:
lm(formula = speer ˜ kugel, data = d.sport)

.......

I methods(class="lm") lists the methods for class "lm".

184 / 1

> methods(class = "lm")

[1] add1.lm* alias.lm*
[3] anova.lm case.names.lm*
[5] confint.lm cooks.distance.lm*
[7] deviance.lm* dfbeta.lm*
[9] dfbetas.lm* drop1.lm*

[11] dummy.coef.lm effects.lm*
[13] extractAIC.lm* family.lm*
[15] formula.lm* hatvalues.lm
[17] influence.lm* kappa.lm
[19] labels.lm* logLik.lm*
[21] model.frame.lm model.matrix.lm
[23] nobs.lm* plot.lm
[25] predict.lm print.lm
[27] proj.lm* qr.lm*
[29] residuals.lm rstandard.lm
[31] rstudent.lm simulate.lm*
[33] summary.lm variable.names.lm*
[35] vcov.lm*

Non-visible functions are asterisked

185 / 1

Summary: Many functions in R are generic functions, which ”dispatch”
to calling a ”method” depending on the class of the first argument:

Generic Functions—Class—Method:
〈generic-func〉(〈obj〉,)

dispatches to calling
〈generic-func〉.〈class〉(〈obj〉,)

where 〈class〉 is the class of 〈obj〉, or it calls
〈generic-func〉.default(〈obj〉,)

if there is no 〈generic-func〉.〈class〉 method.
e.g., after x <- seq(-4, 4, by = 0.05),

− x calls print(x) which really calls print.default(x)
− summary(d.sport) really calls summary.data.frame(d.sport)
− plot(y ˜ x,) really calls plot.formula(y ˜ x,)
− plot(x, sin(x)) really calls plot.default(x, sin(x)) (as there

is no plot.numeric())

186 / 1

10.3 Options

I Options taylor some aspects14 of R’s behavior to your desires:
> (x <- pi * c(1, 10, 100, 0.1))

[1] 3.1415927 31.4159265 314.1592654 0.3141593

> options(digits = 3)

> print(x[1:3], digits= 15) # (alternative)

[1] 3.14159265358979 31.41592653589793 314.15926535897933

> ## revert to default : 7 digits printing:
> options(digits = 7)

14mostly only how R outputs, i.e., print()s or format()s things
187 / 1

I Enquire options() (or also par())
> options("digits")

$digits
[1] 7

> ## or, often more conveniently:
> getOption("digits")

[1] 7

> str(par("mar", "col", "cex", "pch"))# a list

List of 4
$ mar: num [1:4] 5.1 4.1 4.1 2.1
$ col: chr "black"
$ cex: num 1
$ pch: int 1

188 / 1

I Good R programming practice: reset options at end to
previous values, either for options():
> op <- options(digits=13)
> pi * 100ˆ(0:2)

[1] 3.14159265359 314.15926535898 31415.92653589793

> options(op) ## reset to previous value
> str(op)

List of 1
$ digits: int 7

or also for par():

> old.par <- par(mfrow = c(2,2), mgp = c(2,1,0))
> for(i in 1:4) curve(sin(i * pi* x),
+ main = paste("sin(",i,"pi x)"))
> par(old.par)
> par("mfrow")# areback to (1, 1)

[1] 1 1

189 / 1

I The setting of options (and par) is ”lost” at the end of the R
session.

I In order to always set options and other initial action,
use the startup mechanism, see ?Startup ;
e.g., on Linux or Mac: can provide a file ‘ /.Rprofile’; e.g., at
the Seminar für Statistik ETH, we have (among other things)
> options(repos= c(CRAN= "http://cran.ch.r-project.org"),
+ pdfviewer = "evince",
+ browser = "firefox")

as default for everyone, in a group-wide .Rprofile file.

190 / 1

Using R for Data Analysis and Graphics

11. R packages, CRAN, etc: the
R Ecosystem
In this chapter you will learn more on . . .
. . . exploring and installing R packages
. . . CRAN, etc: a glimpse of “The R World”
. . . how to get help regarding R

191 / 1

11.1 Packages

I R already comes with 14 + 15 = 29 packages pre-installed, namely
the ”standard” (or ”base”) packages

base, compiler, datasets, graphics, grDevices, grid,
methods, parallel, splines, stats, stats4, tcltk, tools,
utils

and the ”recommended” packages

boot, class, cluster, codetools, foreign, KernSmooth,
lattice, MASS, Matrix, mgcv, nlme, nnet, rpart, spatial,
survival

192 / 1

I In R, by default you ”see” only a basic set of functions, e.g.,
c , read.table , mean , plot , . . . ,

I They are found in your search path of packages

> search() # the first is your workspace

[1] ".GlobalEnv" "package:graphics" "package:grDevices"
[4] "package:datasets" "package:stats" "package:utils"
[7] "package:methods" "Autoloads" "package:base"

> ls(pos=1) # == ls() ˜= "your workspace" - cf "introduction"

[1] "baseP" "ip.H" "Mlibrary" "pkg" "printPs" "recoP"
[7] "tpkgs"

> str(ls(pos=2)) # content of the 2nd search() entry

chr [1:87] "abline" "arrows" "assocplot" "axis" "Axis" ...

> str(ls(pos=9)) # content of the 9th search() entry

chr [1:1168] "-" "-.Date" "-.POSIXt" ":" "::" ":::" "!" ...

193 / 1

I The default list of R objects (functions, some data sets) is actually
not so small: Let’s call ls() on each search() entry:

> ls.srch <- sapply(grep("package:", search(),
+ value=TRUE), # "package:<name>" entries
+ ls, all.names = TRUE)
> fn.srch <- sapply(ls.srch, function(nm) {
+ nm[sapply(lapply(nm, get), is.function)] })
> rbind(cbind(ls = (N1 <- sapply(ls.srch, length)),
+ funs = (N2 <- sapply(fn.srch, length))),
+ TOTAL = c(sum(N1), sum(N2)))

ls funs
package:graphics 88 88
package:grDevices 107 104
package:datasets 103 0
package:stats 498 497
package:utils 199 197
package:methods 375 224
package:base 1268 1226
TOTAL 2638 2336

i.e., 2336 functions in R version 3.0.2
194 / 1

I Till now, we have used functions from packages "base",
"stats", "utils", "graphics", and "grDevices" without a
need to be aware of that.

I find("〈name〉") can be used:

> c(find("print"), find("find"))

[1] "package:base" "package:utils"

> ## sophisticated version of
> ## rbind(find("mean"), find("quantile"),):
> cbind(sapply(c("mean", "quantile", "read.csv", "plot"),
+ find))

[,1]
mean "package:base"
quantile "package:stats"
read.csv "package:utils"
plot "package:graphics"

195 / 1

I Additional functions (and datasets) are obtained by
(possibly first installing and then) loading additional packages.

I > library(MASS) or require(MASS)
I How to find a command and the corresponding package?

> help.search("...") 15, (see Intro)
I On the internet: CRAN (http://cran.r-project.org, see

Resources on the internet (slide 15) is a huge repository16 of R packages,
written by many experts.

I CRAN Task Views help find packages by application area
I What does a package do?

> help(package = class) or (←→)
> library(help = class) .

Example (of small recommended) package:
> help(package = class)

15can take l..o..n..g.. (only the first time it’s called in an R session !)
16actually a distributed Network with a server and many mirrors,

196 / 1

> help(package = class)
Information on package ‘class’

Description:

Package: class
Priority: recommended
Version: 7.3-9
Date: 2013-08-21
Depends: R (>= 3.0.0), stats, utils
Imports: MASS
Authors@R: c(person("Brian", "Ripley", role = c("aut",

"cre", "cph"), email =
"ripley@stats.ox.ac.uk"), person("William",
"Venables", role = "cph"))

Description: Various functions for classification.
Title: Functions for Classification
ByteCompile: yes
License: GPL-2 | GPL-3
URL: http://www.stats.ox.ac.uk/pub/MASS4/
Packaged: 2013-08-21 12:04:50 UTC; ripley
Author: Brian Ripley [aut, cre, cph], William Venables

[cph]

197 / 1

Second part of
> help(package = class)
NeedsCompilation: yes
Repository: CRAN
Date/Publication: 2013-08-21 14:10:11
Built: R 3.0.1; x86_64-unknown-linux-gnu; 2013-08-22

00:16:39 UTC; unix

Index:

SOM Self-Organizing Maps: Online Algorithm
batchSOM Self-Organizing Maps: Batch Algorithm
condense Condense training set for k-NN classifier
knn k-Nearest Neighbour Classification
knn.cv k-Nearest Neighbour Cross-Validatory

Classification
knn1 1-nearest neighbour classification
lvq1 Learning Vector Quantization 1
lvq2 Learning Vector Quantization 2.1
lvq3 Learning Vector Quantization 3
lvqinit Initialize a LVQ Codebook
lvqtest Classify Test Set from LVQ Codebook
multiedit Multiedit for k-NN Classifier
olvq1 Optimized Learning Vector Quantization 1
reduce.nn Reduce Training Set for a k-NN Classifier
somgrid Plot SOM Fits

198 / 1

Installing packages from CRAN

I Via the “Packages” menu (in RStudio or other GUIs for R)
I Directly via install.packages()17.

Syntax:
install.packages(pkgs,lib,repos = getOption(”repos”), ...)

pkgs: character vector names of packages whose current
versions should be downloaded from the repositories.

lib: character vector giving the library directories where to
install the packages. If missing, defaults to the first
element of .libPaths().

repos: character with base URL(s) of the repositories to use,
typically from a CRAN mirror. You can choose it
interactively via chooseCRANmirror() or explicitly
by options(repos= c(CRAN="http://...")) .

. . .: many more (optional) arguments.

17which is called anyway from the menus mentioned above
199 / 1

Installing packages – Examples

I Install once, then use it via require() or library():

> chooseCRANmirror()
> install.packages("sfsmisc")
> ## For use:
> require(sfsmisc) # to "load and attach" it

I > install.packages("sp", # using default "lib"
+ repos = "http://cran.CH.r-project.org")

I or into a non-default library of packages:

> install.packages("sp", lib = "my_R_folder/library",
+ repos = "http://cran.CH.r-project.org")
> ## and now load it from that library (location):
> library(sp, lib = "my_R_folder/library")

Note that you need ”write permission” in the corresponding ”library”,
i.e., folder of packages (by default: .libPaths()[1]).

200 / 1

Maintaining your package installations

Packages are frequently updated or improved. When new R versions
are released, some packages need changing too. Therefore it is
necessary to maintain your package installations. An easy way to do
this is also via command line:
> update.packages()

This will invoke a dialogue where you can select which packages you
would like to update. It will list the current version of the package and
the version installed on your computer.

201 / 1

