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Non-Stationary Models: ARIMA and SARIMA
Why?

We have seen that many time series we encounter in prac-
tice show trends and/or seasonality. While we could de-
compose them and model the stationary part, it might also 
be attractive to directly model a non-stationary series.

How does it work?
There is a mechanism, "the integration" or "the seasonal
integration" which takes care of the deterministic features, 
while the remainder is modeled using an ARMA(p,q).

There are some peculiarities!
 see blackboard!
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Example: Monthly Oil Prices
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Taking the Logarithm is Key
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Differencing Yields a Stationary Series
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ARIMA(p,d,q)-Models
Idea: Fit an ARMA(p,q) to a time series where the dth

order difference with lag 1 was taken before. 

Example: If                                                                   ,
then  

Notation: With backshift-operator B()

Stationarity: ARIMA-models are usually non-stationary!

Advantage: it‘s easier to forecast in R!

1 (1 ) ~ ( , )t t t tY X X B X ARMA p q   

( )(1 ) ( )d
t tB B X B E   

~ ( ,1, )tX ARIMA p q
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ACF/PACF of the Differenced Series
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Fitting an ARIMA in R
We start by fitting an ARIMA(1,1,2) to the oil series:

> arima(lop, order=c(1,1,2))

Call:
arima(x = lop, order = c(1, 1, 2))

Coefficients:
ar1      ma1      ma2

0.8429  -0.5730  -0.3104
s.e.  0.1548   0.1594   0.0675

sigma^2 = 0.0066:  ll = 261.88,  aic = -515.75
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Alternative Fitting
Instead of fitting an ARIMA(1,1,2) to the logged oil series,
we can also take the differenced log-oil series and fit an
ARMA(1,2) to it.

IMPORTANT:

In this case, we have to do fitting without including an 
intercept (why?), thus:

> arima(diff(log(oil.price)), order=c(1,0,2),
include.mean=FALSE)
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Meaning of the Model / Recipe
We can rewrite the ARIMA(1,1,2) model as an ARMA(2,2),
see blackboard...

Some guidelines on how to fit ARIMA models to observed
time series can also be found on the blackboard...
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Residual Analysis of the ARIMA(1,1,2)
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SARIMA(p,d,q)(P,D,Q)s

= a.k.a. Airline Model. We are looking at the log-trsf. airline data 

Log-Transformed Airline Data
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Seasonal Differencing Helps…
or at the log-transformed Australian Beer Production 
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… But More Is Needed!
or at the log-transformed Australian Beer Production 
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SARIMA(p,d,q)(P,D,Q)s

We perform some differencing… ( see blackboard)
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ACF/PACF of SARIMA(p,d,q)(P,D,Q)s
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Modeling the Airline Data
Since there are “big gaps” in ACF/PACF:

This is an MA(13)-model with many coefficients equal to 0,
or equivalently, a SARIMA(0,1,1)(0,1,1)12.

Note: Every SARIMA(p,d,q)(P,D,Q)s can be written as 
an ARMA(p+sP,q+sQ), where many coefficients
will be equal to 0.

12
1 1(1 )(1 )t tZ B B E   

1 1 1 12 1 1 13t t t tE E E E        
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SARIMA(p,d,q)(P,D,Q)s

The general notation is:

Interpretation:

- one typically chooses d=D=1
- s = periodicity in the data (season)
- P,Q describe the dependency on multiples of the period
 see blackboard...

(1 ) (1 )

( ) ( ) ( ) ( )
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Forecasting Airline Data
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Residual Analysis of SARIMA(0,1,1)(0,1,1)
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Outlook to Non-Linear Models
What are linear models?

Models which can be written as a linear combination of
i.e. all AR-, MA- and ARMA-models

What are non-linear models?
Everything else, e.g. non-linear combinations of , 
terms like in the linear combination, and much more!  

Motivation for non-linear models?
- modeling cyclic behavior with quicker increase then decrease
- non-constant variance, even after transforming the series

tX

tX
2
tX


