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AR-Modelling
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Identification Parameter Model
of the Order p Estimation Diagnostics

- ACF/PACF - Regression - Residual Analysis
- AIC/BIC - Yule-Walker - Simulation

- MLE
- Burg
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Is an AR(p) suitable, and what is p?
- For all AR(p)-models, the ACF decays exponentially

quickly, or is an exponentially damped sinusoid.

- For all AR(p)-models, the PACF is equal to zero for
all lags k>p. The behavior before lag p can be anything.

If what we observe is fundamentally different from the above, it is
unlikely that the series was generated from an AR(p)-process. We
thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities (bias, 
variability, compensation issue) and is tricky to interpret!!!
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Model Order for log(lynx)
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Parameter Estimation for AR(p)
Observed time series are rarely centered. Then, it is inappropriate
to fit a pure AR(p) process. All R routines by default assume the
shifted process . Thus, we face the problem:

The goal is to estimate the global mean , the AR-coefficients
, and some parameters defining the distribution of the

innovation . We usually assume a Gaussian, hence this is .

We will discuss 4 methods for estimating the parameters:

OLS, Burg’s algorithm, Yule-Walker, MLE
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OLS Estimation
If we rethink the previously stated problem:

we recognize a multiple linear regression problem without
intercept on the centered observations. What we need to do is:

1) Estimate and determine

2) Run a regression w/o intercept on      to obtain

3) For , take the residual standard error from the output.

This all works without any time series software, but is a bit
cumbersome to implement. Dedicated procedures exist...
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OLS Estimation
> f.ols <- ar.ols(llynx, aic=F, inter=F, order=2)
> f.ols
Coefficients:

1        2  
1.3844  -0.7479

Order selected 2  sigma^2 estimated as 0.2738

> fit.ar.ols$x.mean
[1] 6.685933

> sum(na.omit(fit.ar.ols$resid)^2)/112
[1] 0.2737594



8Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 06

Burg‘s Algorithm
While OLS works, the first      instances are never evaluated as
responses. This is cured by Burg’s algorithm, which uses the 
property of time-reversal in stochastic processes. We thus 
evaluate the RSS of forward and backward prediction errors:

In contrast to OLS, there is no explicit solution and numerical 
optimization is required. This is done with a recursive method 
called the Durbin-Levison algorithm (implemented in R).
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Burg’s Algorithm
> f.burg <- ar.burg(llynx, aic=F, order.max=2)
> f.burg

Coefficients:
1        2  

1.3831  -0.7461  

Order selected 2  sigma^2 estimated as  0.2707

> f.ar.burg$x.mean
[1] 6.685933

Note: The innovation variance is estimated from the Durbin-
Levinson updates and not from the residuals using the MLE!
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Yule-Walker Equations
The Yule-Walker-Equations yield a LES that connects the true ACF 
with the true AR-model parameters. We plug-in the estimated ACF 
coefficients

for k=1,…,p

and can solve the LES to obtain the AR-parameter estimates.

is the arithmetic mean of the time series
is obtained from the fitted coefficients via
the autocovariance of the series and takes
a different value than before!

There is an implementation in R with function ar.yw().
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Yule-Walker Equations
> f.ar.yw

Call: ar.yw.default(x = log(lynx), aic = FALSE, 
order.max = 2)

Coefficients:
1        2  

1.3504  -0.7200  

Order selected 2  sigma^2 estimated as  0.3109

While the Yule-Walker method is asymptotically equivalent to
OLS and Burg’s algorithm, it generally yields a solution with
worse Gaussian likelihood on finite samples
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Maximum-Likelihood-Estimation
Idea: Determine the parameters such that, given the observed 

time series , the resulting model is the most 
plausible (i.e. the most likely) one.

This requires the choice of a probability model for the time series. 
By assuming Gaussian innovations,                        , any AR(p) 
process has a multivariate normal distribution:

, with     depending on

MLE then provides simultaneous estimates by optimizing:  
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Maximum-Likelihood Estimation
> f.ar.mle

Call: arima(x = log(lynx), order = c(2, 0, 0))

Coefficients:
ar1      ar2  intercept

1.3776  -0.7399     6.6863
s.e. 0.0614   0.0612     0.1349

sigma^2=0.2708; log likelihood=-88.58; aic=185.15

While MLE by default assumes Gaussian innovations, it still 
performs resonably for other distributions as long as they are
not extremly skewed or have very precarious outliers.
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Practical Aspects
• All 4 estimation methods are asymptotically equivalent.

• Even on finite samples, the differences are usually small.

• Under Gaussian distribution, OLS and MLE coincide.

• OLS/YW: explicit solution; Burg/MLE: numerical solution.

• Functions ar.xx() provide easy AIC estimation of     .

•   Function arima() provides standard errors for all parameters.

-> Either work with ar.burg() or with arima(), depending on 
whether you want AIC or standard errors. Watch out for war-
nings if the numerical solution do not converge.

p
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Comparison: Alpha Estimation vs. Method

LS YW MLE Burg
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Comparison: Alpha Estimation vs. n
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Comparison: Sigma Estimation vs. Method
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Comparison: Sigma Estimation vs. n
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Model Diagnostics
What we do here is Residual Analysis:

„residuals“ = „estimated innovations“

= 

=

Remember the assumptions we made:

i.i.d,                 ,
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Model Diagnostics
We check the assumptions we made with the following means:

a) Time series plot of

b) ACF/PACF plot of

c) QQ-plot of

 The innovation time series should look like white noise

Lynx example:
fit <- arima(log(lynx), order=c(2,0,0))

acf(resid(fit)); pacf(resid(fit))
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Model Diagnostics: log(lynx) data, AR(2)
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Model Diagnostics: log(lynx) data, AR(11)

Time

se
rie

s

1820 1840 1860 1880 1900 1920

-1
.0

-0
.5

0.
0

0.
5

1.
0

-0
.2

0.
2

0.
6

1.
0

Lag k

A
ut

o-
K

or
r.

0 5 10 15 20

-0
.2

0.
0

0.
2

Lag k

pa
rt.

 A
ut

ok
or

r

1 5 10 15 20



23Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2013 – Week 06
Model Diagnostics: Normal Plots
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AIC/BIC
If several alternative models show satisfactory residuals, using 
the information criteria AIC and/or BIC can help to choose the 
most suitable one:

AIC = 
BIC = 

where                                                    

= „Likelihood Function“
p is the number of parameters and equals p or p+1
n is the time series length

Goal: Minimization of AIC and/or BIC

2log( ) 2L p 
2log( ) 2 log( )L n p 

2 2( , , ) ( , , , )L f x     
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AIC/BIC
We need (again) a distribution assumption in order to compute
the AIC and/or BIC criteria. Mostly, one relies again on i.i.d. 
normally distributed innovations. Then, the criteria simplify to:

AIC = 
BIC = 

Remarks:

 AIC tends to over-, BIC to underestimate the true p
 Plotting AIC/BIC values against p can give further insight. 

One then usually chooses the model where the last 
significant decrease of AIC/BIC was observed

2ˆlog( ) 2En p 
2ˆlog( ) 2 log( )En n p 
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AIC/BIC
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Diagnostics by Simulation
As a last check before a model is called appropriate, simulating 
from the estimated coefficients and visually inspecting the 
resulting series (without any prejudices) to the original can be 
done.

 The simulated series should „look like“ the original. If 
this is not the case, the model failed to capture (some 
of) the properties of the original data.
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Diagnostics by Simulation, AR(2)
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Diagnostics by Simulation, AR(11)
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