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Basics of Modeling

Simulation

(Time Series) Model >  Data

Estimation

Inference
Residual Analysis

Data > (Time Series) Model
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A Simple Model: White Noise

A time series (W,,W,,...,W_) Is a White Noise series if the random
variables W,,W,,... are independent and identically distributed with
mean zero.

This imples that all variables W, have the same variance o, , and
Cov(W;,W;)=0 forall i=].
Thus, there are no autocorrelations either: p, =0 forall k #0.

If In addition, the variables also follow a Gaussian distribution, I.e.
W, ~ N (0,5, , the series is called Gaussian White Noise.

The term White Noise is due to the analogy to white light.

i niversity of Applied Sciences



Applied Time Series Analysis
SS 2013 — Week 05

Example: Gaussian White Noise
> plot(ts(rnorm(200, mean=0, sd=1)))

Gaussian White Noise
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Example: Gaussian White Noise
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Estimating the Conditional Mean

wWhoaa!!! we should get tnside!
Pon't worry, it's OK.
Lightning only kills about
45 AMErLcAns a Ljear, o the
chance of being hit is only

about 1/7'000'000
o -

A
L Do You think that still
ﬂmeLEs; here and now???
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Time Series Modeling

There is a wealth of time series models

- AR autoregressive model

- MA moving average model

- ARMA combination of AR & MA
- ARIMA non-stationary ARMAS

- SARIMA seasonal ARIMASs

We start by discussing autoregressive models. They are
perhaps the simplest and most intuitive time series models
that exist.
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Basic Idea for AR(p)-Models

We have a process where the random variable X, depends on an
auto-regressive linear combination of the preceding X,_,..., X
plus a ,completely independent” term called innovation E.

t—p’

X=X+ +a, X _ +E

Here, p is called the order of the autoregressive model. Hence, we
abbreviate by AR(p). An alternative notation is with the backshift
operator B:

(1-oB-a,B*—..—a,B")X, = E, orshort, ®(B)X, =E,

Here, ®(B) is called the characteristic polynomial of the AR(p).
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AR(1)-Model

The simplest model is the AR(1)-model
Xe=on X +E

where

E, isi.i.d with E[E,]=0 and Var(E,) = o?

Under these conditions, E, Is a white noise process, and we
additionally require causality, i.e. E, being an innovation:

E. is independent of X,s<t
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Causality

Note that causality is an important property that, despite the fact
that it's missing in much of the literature, is necessary in the
context of AR-modeling:

E, is an innovation process > E, all are independent

All E, are independent XEt IS an innovation
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AR(p)-Models and Stationarity

The following is absolutely essential:

AR(p) models must only be fitted to stationary time series. Any
potential trends and/or seasonal effects need to be removed first.
We will also make sure that the processes are stationary.

Under which circumstances is an AR(p) stationary?

- see blackboard...
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Stationarity of AR(p)-Processes
We require:
1) E[X,]=u=0
2) Conditions on (& ,..., &)
All (complex) roots of the characteristic polynom
l-az—a,2° —a,2° =0

need to lie outside of the unit circle. This can be
checked with R-function polyroot()
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A Non-Stationary AR(2)-Process

X, = % X4 +% X, , + E, is not stationary...

Non-Stationary AR(2)
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Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=0.7
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Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=-0.7
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Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=1
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Autocorrelation of AR(p) Processes
On the blackboard...
Yule-Walker Equations

We observe that there exists a linear equation system built up from
the AR(p)-coefficients and the ACF-coefficients of up to lag p.
These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series
2) Plug-in the estimates into the Yule-Walker-Equations
3) The solution are the AR(p)-coefficients
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Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=0.7

SE
—
© |
o
© |
LL o
O
< <
o
N |
o
o _| h“ll ..............................................................................................................................................................................................
e T T T T T
0 50 100 150 200
lag
Estimated ACF from an AR(1)-series with alpha_1=0.7
SEN
—
§ l
o
: : “
O
< N H
o “CHHHE —mmmm e e e e e e e e H e e e e e e
”“u S lwnn i LIl ..I”ﬂl. S i1y R — 1 TTTHNOYYY
o~ 'HHHHM"'UU _______________ L
A
I I I I I
0 50 100 150 200

Marcel Dettling, Zurich University of Applied Sciences

18



Applied Time Series Analysis
SS 2013 — Week 05

Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=-0.7
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AR(3): Simulation and Properties
> xxX <- arima.sim(list(ar=c(0.4, -0.2, 0.3)),

AR(3) with a;=-0.4, 0,=-0.2, 03=0.3
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AR(3): Simulation and Properties

> autocorr <- ARMAacf(ar=c(0.4, -0.2, 0.3),...)
> plot(0:20, autocorr, type="h", xlab="Lag")

Theoretical Autocorrelation for an AR(3)
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c(1, autocorr)
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AR(3): Simulation and Properties

> autocorr <- ARMAacf(ar=..., pacf=TRUE,
> plot(0:20, autocorr, type="h", xlab="Lag")

Theoretical Partial Autocorrelation for an AR(3)
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Fitting AR(p)-Models

This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?
- will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients
- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

3) Residual Analysis
- to be discussed

ich University of Applied Sciences
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AR-Modelling

1

ldentification
of the Order p

- ACF/PACF
- AIC/BIC

2

Parameter
Estimation

3

Model
Diagnostics

- Regression
- Yule-Walker
- MLE

- Burg

- Residual Analysis
- Simulation
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Is an AR(p) suitable, and what is p?

- For all AR(p)-models, the ACF decays exponentially
quickly, or is an exponentially damped sinusoid.

- For all AR(p)-models, the PACF is equal to zero for
all lags k>p.

If what we observe is fundamentally different from the above, it is
unlikely that the series was generated from an AR(p)-process. We
thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities and is
tricky to interpret!!!
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Model Order for sqrt(purses)
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Model Order for log(lynx)
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