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Least squares regression

= argming Z T9 = argming Z — ;) = argmin, Z

Why least squares regression?
m Historic (used since 1800)
m The least squares estimator 0= (XTX)_IXTy has a closed form solution, and is simple to compute
m If y=X0+eand e~ N,(0,0%]):
O Least squares estimator = MLE
O Least squares estimator has smallest variance among all unbiased estimators (Gauss-Markov)
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Problems with LS regression

m When the statistical errors are not Normally distributed, the level of confidence intervals and tests is
about right, but the power can be low (power = P(reject Hy|H, istrue)).

m It is sensitive to outliers, since large residuals that are squared carry a lot of weight
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Robust regression

m Robust regression can (partly) resolve these problems. We will look at the following methods:
O Lj regression (=Least Absolute Deviations (LAD) regr.)
O Huber regression
O Mallows regression
O Schweppe regression
O Least Median of Squares (LMS) regression
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L, regression

n
0 = argmin, Z lyi — 21 0]
i=1

m Older than LS: Boscovich (1760), Laplace (1789)

m Did not become popular, since the solution cannot be written in closed form (no problem anymore

with modern computers; can be solved efficiently with interior point methods)
m In location model y; = o + ¢;, L1 regression gives median of the data

m s more robust against outliers in the y-direction, but still very sensitive to outliers in the x-direction
m |s inefficient when the errors are normally distributed; needs about 50% more observations for same

precision
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Huber regression

n
6 = argming Z pelyi — z16),
i=1

where
u?/2 iflul <c

pelu) = { c(lul —¢/2) iflu] > ¢
m Compromise between L1 and Lo regression:
0 ¢ = oo = Lo regression (=least squares)
O ¢= 0= L regression (use p.(u) = |ul)

m |dea: penalize small residuals quadratically, and large residuals linearly
m Computation: solve Y% | ¥.(y; — 21 0)x; = 0, where 9.(u) = pl,(u) = sign(u) min(Jul, c).
m The changepoint ¢ should be chosen suitably w.r.t residuals. Computation with iterated weighted

least squares.
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L, /Huber estimators

m One cannot write down the exact distribution of the estimators = use asymptotic arguments or
bootstrap

m Outliers in the y-direction have limited influence, but outliers in the z-direction don't.
Solution: Mallows/Schweppe
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Mallows/Schweppe regression

i=1
= Mallows:
a
ofer) =min (1) vl
|Az] )
m Schweppe:
1
n(x,r) = ——ve(||Az]lr)
[ Az] "

m || Az| is a measure of leverage of x, for example ||Az||?> = const - 27 (X7 X)~'z, but then robust

version

e = p'(c) from Huber regression
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Breakdown point

The breakdown point of an estimator = the proportion of incorrect observations (i.e. arbitrarily large
observations) an estimator can handle before giving an arbitrarily large result

m Breakdown point of average: 0

m Breakdown point of median: 1/2

m Breakdown point of Least Squares regression: 0

m Breakdown point of L and Huber: 0 (in z-direction)

m Breakdown point Mallows/Schweppe: < 1/p
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LMS regression

0 = argmingmedian((y; — x1 6)?)
m See picture on slide
m Hampel (1975), Rousseeuw (1984)
m Breakdown point is approximately 0.5
m Difficult to compute because of many local minima

m Inefficient when statistical errors are normally distributed (convergence rate n~'/3). This can be
improved by replacing the median by an a-truncated mean that leaves out the an observations with
the largest residuals (least trimmed squares).
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MM-estimation

m First find highly robust M-estimate of & (first M).

m Then keep ¢ fixed and find a close by M-estimate of 6, for example using a Newton step (second M).
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Some closing thoughts (see Faraway Ch 13)

m Robust estimators protects against long-tailed errors, but not against problems with model choice
and variance structure. These latter problems can be more serious than non-normal errors.

= Inference for 6 is more difficult. One can use bootstrap.

m Robust methods can be used in addition to least squares. There is cause to worry if the two
estimators differ a lot.
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