7. Model diagnostics and unusual and influential data

nusual and influential data	3
everage points Leverage	6
Leverage	8
egression outliers Residuals	11
fluential points Influence	
hecking model assumptions Linearity	18
Normality	21

Unusual and influential data

■ Outline:

◆ What to do with them?

♦ Leverage: hat values

◆ Outliers: standardized/studentized residuals

Influence: Cook's distanceChecking model assumptions

2 / 21

Outliers and the ozone layer

- In 1985, data gathered by the British Antarctic Survey showed that ozone levels for Antarctica had dropped 10% below normal January levels.
- This was surprising, as the Nimbus 7 satellite hadn't recorded such low ozone concentrations.
- After examining the satellite data more closely, it turned out that the satellite had been recording these low concentration levels for 9 years. But they were being treated as outliers by a computer program and discarded!
- The damage to our atmosphere went undetected and untreated for 9 years because outliers were discarded without being examined. So don't just toss out outliers, as they may be the most valuable members of a dataset!

What to do with unusual data?

- Neither ignore them, nor throw them out without thinking
- Check for data entry errors
- Think of reasons why observation may be different
- Change the model
- Fit model with and without the observations to see the effect
- Robust regression (will be discussed later)

4 / 21

Unusual data points

- Univariate outlier:
 - lacktriangle Unusual value for one of the X's or for Y
- Leverage point: point with unusual combination of independent variables
- Regression outlier:
 - ◆ Large residual (in absolute value)
 - lacktriangle The value of Y conditional on X is unusual
- Influential point: points with large influence on the regression coefficients
- Influence = Leverage × 'Outlyingness'
- See examples

Leverage points

Leverage

- Leverage point: point with unusual combination of the independent variables
- Leverage is measured by the so-called "hat values"
- These are entries from the hat matrix $P = X(X^TX)^{-1}X^T$; $\hat{Y} = PY$
- $\hat{Y}_j = P_{j1}Y_1 + \dots + P_{jn}Y_n = \sum_{i=1}^n P_{ji}Y_i$
- lacktriangle The weight P_{ji} captures the contribution of Y_i to the fitted value \hat{Y}_j
- Since $P^TP = P$, we have $\sum_{j=1}^n P_{ji}^2 = P_{ii}$. The value P_{ii} summarizes the contribution of Y_i to all fitted values.
- \blacksquare Note the dependent variable Y is not involved in the computation of the hat values

7 / 21

Leverage

- Range of the hat values: $1/n \le P_{ii} \le 1$
- Average of the hat values: $mean(P_{11}, \dots, P_{nn}) = (p+1)/n$, where p is the number of independent variables in the model
- Rough rule of thumb: leverage is large if $P_{ii} > 2(p+1)/n$. Draw a horizontal line at this value
- R-function: hatvalues()
- See example

Residuals

- lacktriangle Residuals: $\hat{\epsilon}_i = Y_i \hat{Y}_i$. R-function resid().
- Even if statistical errors have constant variance, the residuals do not have constant variance: $Var(\hat{\epsilon}_i) = \sigma^2(1 P_{ii})$.
- Hence, high leverage points tend to have small residuals, which makes sense because these points can 'pull' the regression line towards them.

10 / 21

Standardized/studentized residuals

- We can compute versions of the residuals with constant variance:
 - lacktriangle Standardized residuals $\hat{\epsilon}_i'$ and studentized residuals $\hat{\epsilon}_i^*$:

$$\hat{\epsilon}_i' = \frac{\hat{\epsilon}_i}{\hat{\sigma}\sqrt{1 - P_{ii}}} \quad \text{and} \quad \hat{\epsilon}_i^* = \frac{\hat{\epsilon}_i}{\hat{\sigma}_{(-i)}\sqrt{1 - P_{ii}}}.$$

- lacktriangle Here $\hat{\sigma}_{(-i)}$ is an estimate of σ when leaving out the ith observation.
- ◆ R-functions rstandard() and rstudent().

Testing for outliers

- Look at studentized residuals by eye.
- lacksquare If the model is correct, then $\hat{\epsilon}_i^*$ has t-distribution with n-p-2 degrees of freedom.
- If the model is true, about 5% of observations will have studentized residuals outside of the ranges [-2,2]. It is therefore reasonable to draw horizontal lines at ± 2 .
- We can use Bonferroni test to determine if largest studentized residual is an outlier: divide your significance level α by n.

12 / 21

Influential points

13 / 21

Influence

- Influence = Leverage \times 'Outlyingness'
- Cook's distance:

$$D_i = \frac{P_{ii}}{1 - P_{ii}} \times \frac{\hat{\epsilon}_i'^2}{p + 1}$$

- Cook's distance measures the difference in the regression estimates when the *i*th observation is left out:

 - $D_i = \sum_{j=1}^n (\hat{Y}_{(-i)j} \hat{Y}_j)^2 / (p\hat{\sigma}^2)$
- Rough rule of thumb: Cook's distance is large if $D_i > 4/(n-p-1)$
- R-command: cooks.distance()
- Beware of jointly influential points (see example)

Some more useful R-commands

- indentify(): to identify points in the plot
- plot(m, which=c(1:5)) gives 5 plots:
 - ◆ Tukey-Anscombe plot: Residuals versus fitted values
 - ◆ QQ-plot of standardized residuals
 - ◆ Scale-location plot: Square root of standardized residuals versus fitted values
 - ◆ Cook's distance
 - ◆ Standardized residuals versus leverage

15 / 21

Checking model assumptions

16 / 21

Linearity

- Assumption: $E(\epsilon_i) = 0$ for all i = 1, ..., n
- Plots to use:
 - ◆ Tukey-Anscombe plot (residuals versus fitted values; most important diagnostic plot!)
 - ◆ Plot residuals versus each independent variable
 - ◆ Added variable plot for each independent variable
- Possible solutions:
 - ◆ Transform variables
 - ◆ Adapt model (add variables or quadratic terms)

Added variable plot

- Recall how to make an added variable plot for X_j :
 - lacktriangle Regress Y on all independent variables except for X_j . Obtain the residuals $\hat{\epsilon}_i^{(1)}$, $i=1,\ldots,n$
 - lacktriangle Regress X_j on all the other independent variables. Obtain the residuals $\hat{\epsilon}_i^{(2)}$, $i=1,\ldots,n$
 - \blacklozenge Plot $\hat{\epsilon}_i^{(1)}$ versus $\hat{\epsilon}_i^{(2)}$, $i=1,\dots,n$

18 / 21

Constant variance

- Assumption: $Var(\epsilon_i) = \sigma^2$ for all i = 1, ..., n
- Plots to use:
 - ◆ Tukey-Anscombe plot
 - ◆ Plot residuals versus each independent variable
 - ◆ Added variable plot for each independent variable
- Possible solutions:
 - ♦ Use weighted least squares when the form of non-constant variance is known
 - ◆ Transform the dependent variable

Uncorrelated errors

- Assumption: $Cor(\epsilon_i, \epsilon_j) = 0$ for all $i \neq j$
- Plots to use:
 - ♦ When time series data: plot residuals versus time, and plot successive residuals
 - ◆ Think about data collection process
- Possible solutions:
 - ◆ Generalized least squares

20 / 21

Normality

- lacksquare Assumption: $\epsilon_i \sim N(0,\sigma^2)$ for all $i=1,\ldots,n$
- Plots to use:
 - ◆ QQ plot of residuals
- Consequences of nonnormality:
 - ◆ Levels are still valid when sample size is large, but there may be more efficient procedures than least squares
- Possible solutions:
 - ◆ Do nothing
 - ◆ Transform dependent variable