6. Dummy variable regression

Why include a qualitative independent variable?	٠.	 ٠.	• •	 2
Simplest model				3
Simplest case		 		 4
Example (continued)		 		 . 5
Possible solution: separate regressions		 		 6
Independent variable vs. regressor		 		 . 7
Common slope model		 		 . 8
Testing		 		 9
More general models				10
More than one quantitative independent variable				
Polytomous independent variables				
Example (continued)				
Testing with polytomous independent variable				
R commands				
More than one qualitative independent variable				
Interaction				17
Definition		 		 18
Interaction vs. correlation		 		 19
Constructing regressors		 		 20
Testing		 		 21
Principle of marginality		 		 22
Polytomous independent variables		 		 23
Hypothesis tests		 		 24
Standardized estimates		 		 25

Why include a qualitative independent variable?

- We are interested in the effect of a qualitative independent variable (for example: do men earn more than women?)
- We want to better predict/describe the dependent variable. We can make the errors smaller by including variables like gender, race, etc.
- Qualitative variables may be confounding factors. Omitting them may cause biased estimates of other coefficients.

2 / 25

Simplest model 3 / 25

Simplest case

- **■** Example:
 - ◆ Dependent variable: income
 - ◆ One quantitative independent variable: education
 - ◆ One dichotomous (can take two values) independent variable: gender
- Assume effect of either independent variable is the same, regardless of the value of the other variable (additivity, parallel regression lines).
- Usual assumptions on statistical errors: independent, zero means, constant variance, normally distributed, fixed X's or X independent of statistical errors.

Example (continued)

- Suppose that we are interested in the effect of education on income, and that gender has an effect on income.
- Scenario 1: Gender and education are uncorrelated
 - ◆ Gender is not a confounding factor
 - ◆ Omitting gender gives correct slope estimate, but larger errors
- Scenario 2: Gender and education are correlated
 - ◆ Gender is a confounding factor
 - ◆ Omitting gender gives biased slope estimate, and larger errors

5 / 25

Possible solution: separate regressions

- Fit separate regression for men and women
- Disadvantages:
 - ◆ How to test for the effect of gender?
 - ◆ If it is reasonable to assume that regressions for men and women are parallel, then it is more efficient to use all data to estimate the common slope.

Independent variable vs. regressor

■ Y=income, X=education, D=regressor for gender:

$$D_i = \left\{ \begin{array}{ll} 1 & \text{for men} \\ 0 & \text{for women} \end{array} \right.$$

- Independent variable = real variable of interest
- Regressor = variable put in the regression model
- In general, regressors are functions of the independent variables. Sometimes regressors are equal to the independent variables.

7 / 25

Common slope model

- $\blacksquare Y_i = \alpha + \beta X_i + \gamma D_i + \epsilon_i$
- For women $(D_i = 0)$:

$$Y_i = \alpha + \beta X_i + \gamma \cdot 0 + \epsilon_i = \alpha + \beta X_i + \epsilon_i$$

■ For men $(D_i = 1)$:

$$Y_i = \alpha + \beta X_i + \gamma \cdot 1 + \epsilon_i = (\alpha + \gamma) + \beta X_i + \epsilon_i$$

- What are the interpretations of α , β and γ ? (see picture)
- What happens if we code D=1 for women and D=0 for men?

Testing

- Test the partial effect of gender (=effect of gender when education is in the model):
 - $H_0: \gamma = 0, H_a: \gamma \neq 0$
 - ◆ Same as before:

Compute *t*-statistic or incremental F-test

- Test the partial effect of education (=effect of education when gender is in the model):
 - $H_0: \beta = 0, H_a: \beta \neq 0$
 - ◆ Same as before:

Compute *t*-statistic or incremental F-test

9 / 25

More general models

10 / 25

More than one quantitative independent variable

- All methods go through, as long as we assume parallel regression surfaces.
- Model: $Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \gamma D_i + \epsilon_i$.
- Women $(D_i = 0)$:

$$Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \gamma \cdot 0 + \epsilon_i$$

= $\alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \epsilon_i$

■ Men $(D_i = 1)$:

$$Y_i = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \gamma \cdot 1 + \epsilon_i$$

= $(\alpha + \gamma) + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \epsilon_i$

■ Interpretation of α , β_1, \ldots, β_k , γ .

Polytomous independent variables

- Qualitative variable with more than two categories
- Example: Duncan data:
 - lacktriangle Dependent variable: Y = prestige
 - ◆ Quantitative independent variables:

 X_1 =income and X_2 =education

- ◆ Qualitative independent variable: type (bc, prof, wc)
- D_1 and D_2 are regressors for type:

Туре	D_1	D_2
Blue collar (bc)	0	0
Professsional (prof)	1	0
White collar (wc)	0	1

lacktriangle If there are p categories, use p-1 dummy regressors.

What happens if we use p regressors?

12 / 25

Example (continued)

- $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma_1 D_1 + \gamma_2 D_2 + \epsilon$
- Blue collar $(D_{i1} = 0 \text{ and } D_{i2} = 0)$:

$$Y_{i} = \alpha + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \gamma_{1} \cdot 0 + \gamma_{2} \cdot 0 + \epsilon_{i}$$
$$= \alpha + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \epsilon_{i}$$

■ Professional ($D_{i1} = 1$ and $D_{i2} = 0$):

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \gamma_1 \cdot 1 + \gamma_2 \cdot 0 + \epsilon_i$$

= $(\alpha + \gamma_1) + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$

■ White collar $(D_{i1} = 0 \text{ and } D_{i2} = 1)$:

$$Y_{i} = \alpha + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \gamma_{1} \cdot 0 + \gamma_{2} \cdot 1 + \epsilon_{i}$$

= $(\alpha + \gamma_{2}) + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \epsilon_{i}$

Testing with polytomous independent variable

- Test partial effect of type, i.e., the effect of type controlling for income and education.
- $\blacksquare \ H_0: \gamma_1 = \gamma_2 = 0$
- H_a : at least one $\gamma_i \neq 0$, j = 1, 2.
- Incremental F-test:
 - ◆ Null model:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

◆ Full model:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma_1 D_1 + \gamma_2 D_2 + \epsilon$$

- What do the individual p-values in summary(lm()) mean?
- First look at F-test, then at individual p-values

14 / 25

R commands

- Creating dummy variables by hand:
 - D1 <- (type=="prof")*1
 - D2 <- (type=="wc")*1
 - m1 <- lm(prestige \sim education+income+D1+D2)
- Letting R do things automatically:
 - m1 <- lm(prestige~education+income+type)</pre>
 - m1 <- lm(prestige~education+income+factor(type))</pre>
- The use of factor():
 - ◆ factor() is not needed in this example, because the coding of the categories is in words: "bc", "prof", "wc".
 - ♦ It is essential to use factor() if the coding of the categories is numerical!
 - ◆ To be safe, you can always use factor.

More than one qualitative independent variable

■ Example: Y=prestige, X_1 =income, X_2 =education,

	Type		D_1	D_2
Blue collar			0	0
Professional			1	0
White collar		0	1	
į	and		ı	
_	Gender	D_3	_	
	Women	0		
	Men	1		

- What is the equation for men with professional jobs? And for women with white collar jobs?

16 / 25

Interaction 17 / 25

Definition

- Two variables are said to *interact* in determining a dependent variable if the partial effect of one depends on the value of the other.
- So far we only studied models without interaction.
- Interaction between a quantitative and a qualitative variable means that the regression surfaces are not parallel. See picture.
- Interaction between two qualitative variables means that the effect of one of the variables depends on the value of the other variable. Example: the effect of type of job on prestige is bigger for men than for women.
- Interaction between two quantitative variables is a bit harder to interpret, and will not consider that now.

Interaction vs. correlation

- First, note that in general, the *independent* variables are *not independent* of each other.
- Correlation: Independent variables are statistically related to each other.
- Interaction:
 Effect of one independent variable on the dependent variable depends on the value of the other independent variable.
- Two independent variables can interact whether or not they are correlated (see picture).

19 / 25

Constructing regressors

- \blacksquare Y=income, X=education, D=dummy for gender
- $\blacksquare Y_i = \alpha + \beta X_i + \gamma D_i + \delta(X_i D_i) + \epsilon_i$
- Note $X \cdot D$ is a new regressor. It is a function of X and D, but not a linear function. Therefore we do not get perfect collinearity.
- Women $(D_i = 0)$:

$$Y_i = \alpha + \beta X_i + \gamma \cdot 0 + \delta(X_i \cdot 0) + \epsilon_i = \alpha + \beta X_i + \epsilon_i$$

■ Men $(D_i = 1)$

$$Y_i = \alpha + \beta X_i + \gamma \cdot 1 + \delta(X_i \cdot 1) + \epsilon_i$$

= $(\alpha + \gamma) + (\beta + \delta)X_i + \epsilon_i$

■ Interpretation of α , β , γ , δ (see picture).

Testing

- Testing for interaction is testing for a difference in slope between men and women. H_0 : $\delta = 0$ and H_a : $\delta \neq 0$.
- What is the difference between:
 - ◆ The model with interaction
 - ◆ Fitting two separate regression lines for men and women

21 / 25

Principle of marginality

- If interaction is significant, do not test or interpret main effects:
 - ◆ First test for interaction effect.
 - ◆ If no interaction, test and interpret main effects.
- If interaction is included in the model, main effects should also be included.
- See pictures of models that violate the principle of marginality.

Polytomous independent variables

- Create interaction regressors by taking the products of all dummy variable regressors and the quantitative variable.
- Example:
 - Y= prestige, $X_1=$ education, $X_2=$ income
 - D_1, D_2 =dummies for type of job

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma_1 D_1 + \gamma_2 D_2 + \delta_{11} X_1 D_1 + \delta_{12} X_1 D_2 + \delta_{21} X_2 D_1 + \delta_{22} X_2 D_2 + \epsilon$$

■ Interpretation of parameters

23 / 25

Hypothesis tests

- When testing for main effects and interactions, follow principle of marginality
- Use incremental F-test

Standardized estimates

- Do not standardize dummy-regressor coefficients.
 - ◆ Dummy regressor coefficient has clear interpretation.
 - ◆ By standardizing it, this interpretation gets lost. Therefore we don't standardize dummy regressor coefficients.
- Also, don't standardize interaction regressors. You can standardize the quantitative independent variable before taking its product with the dummy regressor.