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Non-Stationary Models: ARIMA and SARIMA

Why?
We have seen that many time series we encounter in prac-
tice show trends and/or seasonality. While we could de-
compose them and model the stationary part, it might also
be attractive to directly model a non-stationary series.

How does it work?
There is a mechanism, "the integration" or "the seasonal
Integration" which takes care of the deterministic features,
while the remainder is modeled using an ARMA(p,Qq).

There are some peculiarities!
-> see blackboard!
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Example: Monthly Oil Prices
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Taking the Logarithm is Key

Logged Monthly Price for a Crude Oil Barrel
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Differencing Yields a Stationary Series

Differences of Logged Monthly Crude Oil Prices
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ARIMA(p,d,q)-Models

ldea:

Example:

Notation:

Stationarity:

Advantage:

Marcel Dettling, Zurich University of Applied Sci

Fit an ARMA(p,q) to a time series where the d
order difference with lag 1 was taken before.

If Y, = X,— X, =@0-B)X, ~ ARMA(p,q),
then X, ~ ARIMA(p,1,q)

With backshift-operator B()
®(B)(1-B)" X, = ®(B)E,

ARIMA-models are usually non-stationary!

It's easier to forecast in R!
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ACF/PACF of the Differenced Series
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Fitting an ARIMA In R

We start by fitting an ARIMA(1,1,2) to the oil series:

> arima(lop, order=c(1,1,2))

Call:
arima(x = lop, order = c(1, 1, 2))
Coefficients:

arl mal ma2

0.8429 -0.5730 -0.3104
s.e. 0.1548 0.1594 0.0675

sigma™2 = 0.0066: Il = 261.88, aic =
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Alternative Fitting

Instead of fitting an ARIMA(1,1,2) to the logged oil series,
we can also take the differenced log-oll series and fit an
ARMA(1,2) to it.

IMPORTANT:

In this case, we have to do fitting without including an
Intercept (why?), thus:

> arima(diff(log(oil._price)), order=c(1,0,2),
include.mean=FALSE)

Marcel Dettling, Zurich University of Applied Sciences
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Meaning of the Model / Recipe

We can rewrite the ARIMA(1,1,2) model as an ARMA(2,2),
see blackboard...

Some guidelines on how to fit ARIMA models to observed
time series can also be found on the blackboard...

Marcel Dettling, Zurich University of Applied Sciences
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Residual Analysis of the ARIMA(1,1,2)
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SARIMA(p,d,q)(P,D,Q)s
= a.k.a. Airline Model. We are looking at the log-trsf. airline data

Log-Transformed Airline Data

600
I

300 400

200
I

100
I

1950 1952 1954 1956 1958 1960

Time

Marcel Dettling, Zurich University of Applied Sciences

12



Applied Time Series Analysis
FS 2012 — Week 08

Seasonal Differencing Helps...

Seasonally Differenced Airline Passenger Series
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... But More Is Needed!

Differenced Seasonally Differenced Airline Passenger Series
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SARIMA(p,d,q)(P,D,Q)s

We perform some differencing... (= see blackboard)
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ACF/PACF of SARIMA(p,d,q)(P,D,Q)s
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Modeling the Airline Data
Since there are “big gaps” in ACF/PACF:
Z, =(1+ 8B)(1+y,B®)E,
=E +pE_ +7E_,+L1E

This is an MA(13)-model with many coefficients equal to O,
or equivalently, a SARIMA(0,1,1)(0,1,1)*2.

Note: Every SARIMA(p,d,q)(P,D,Q)s can be written as

an ARMA(p+sP,qg+sQ), where many coefficients
will be equal to 0.
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SARIMA(p,d,q)(P,D,Q)s

The general notation is:
Z, =(1-B)'(1-B%)° X,
®(B)D, (B%)Z, = O(B)O, (B*)E,

Interpretation:

- one typically chooses d=D=1

- s = periodicity in the data (season)

- P,Q describe the dependency on multiples of the period
- see blackboard...

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Airline Data

Forecast of log(AP) with SARIMA(0,1,1)(0,1,1)
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Residual Analysis of SARIMA(0,1,1)(0,1,1)
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Outlook to Non-Linear Models

What are linear models?

Models which can be written as a linear combination of X
..e. all AR-, MA- and ARMA-models

What are non-linear models?
Everything else, e.g. non-linear combinations of X_,
terms like Xf In the linear combination, and much more!

Motivation for non-linear models?
- modeling cyclic behavior with quicker increase then decrease
- non-constant variance, even after transforming the series

Marcel Dettling, Zurich University of Applied Sciences 21
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SMI Log-Returns

SMI Log-Returns
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Normal Plot of SMI Log-Returns
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ACF of SMI Log-Returns

ACF of SMI Log-Returns
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ACF of of Squared SMI Log-Returns
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The ARCH / GARCH Model
- See blackboard...
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Model Choice
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Fitting an ARCH(2) Model

R allows for convenient fitting...

> fit <- garch(lret.smi, order = c(0,2))
> it

Call: garch(x = lret.smi, order = c(0, 2))
Coefficient(s):

a0 al a2z
6.568e-05 1.309e-01 1.074e-01

ich University of Applied Sciences 28



