
1Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 06 

Marcel Dettling
Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, March 26, 2012



2Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 06 

Looking Back & Outlook
We did consider AR(p)-models

where the correlation structure was as follows:

ACF: „exponential decay“
PACF: = 0 for all lags k>p

Now, in practice we could well observe a time series whose 
autocorrelation differs from the above.

We will thus discuss ARMA-models, a class that is suitable
for modeling a wider spectrum of dependency structures.
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Backshift Operator
Purpose: more convenient notation

What it is: function
„go back 1 observation“
„increment the time series index t by -1“

Examples:                             , or also

and

( )B 

1( )t tB X X  1t tBX X 

3
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Using the Backshift Operator
The backshift operator allows for convenient differencing:

a) First order difference with lag 1

b) Second order difference with lag 1

c) bth order difference with lag a

1 (1 )t t t tY X X B X   

2 2
1 (1 ) (1 ) (1 2 )t t t t t tZ Y Y B Y B X B B X        

(1 )a b
t tW B X 
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Moving Average Models
Whereas for AR(p) models, the current observation of a time 
series is written as a linear combination of its own past, MA(q) 
models can be seen as an extension of the „pure“ model

,  where is a white noise process,

in the sense that past innovation terms are
included, too. We call this a moving average model:

Note that there are other interpretations, too. We will discuss
them later. 

t tX E tE

1 2, ,...t tE E 
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Notation for MA(q)-models
The backshift operator, and the characteristic polynom, allow for 
convenient notation:

MA(q):

MA(q) with BS:

MA(q) with BS+CP:

where

is the characteristic polynom

1 1 2 2 ...t t t t q t qX E E E E        

 2
1 21 ... q
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Stationarity of MA(1)-Models
We first restrict ourselves to the simple MA(1)-model

,  where      is an innovation

The series      is weakly stationary, no matter what the choice of 
the parameter     is.

Remember that for proving this, we have to show that:

- the expected value is 0
- the variance is constant and finite
- the autocovariance only depends on the lag k

 see the blackboard for the proof

1 1t t tX E E   tE

tX
1
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ACF of the MA(1)-Process
We can deduct the ACF for the MA(1)-process:

and

for all k>1.

Thus, similar behavior to the PACF of an AR(1).

( ) 0k 

1
2
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(1)(1)
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Simulated Process with β1=0.5
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Simulated Process with β1=-0.5
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MA(1): Remarks
Without additional assumptions, the ACF of an MA(1) doesn‘t 
allow identification of the generating model.

In particular, the two processes

have identical ACF:

10.5t t tX E E   

12t t tU E E   

1 1
2 2
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MA(1): Invertibilty
• An MA(1)-, or in general an MA(q)-process is said to be

invertible if the roots of the characteristic polynom lie
outside of the unit circle.

• Under this condition, there exists only one MA(q)-process
for any given ACF.

• This translates to restrictions on the coefficients. For a 
MA(1)-model,             is required.

• See blackboard for further explanation...
1| | 1 
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Invertible MA(1) = AR(∞) 
Invertible MA(1)-processes can be written as an AR(∞):

1 1t t tX E E  

1 1 1 2( )t t tE X E    

1
t j t j
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E X





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MA(1): More Remarks
• MA(1)-processes have mean zero: 

• If an observed time series shows MA(1)-properties in 
ACF/PACF, but has a mean different from zero, we can 
always model the centered series (idem AR(p)).

• For an MA(1)-process, 

always holds. If the estimated first ACF-coefficient clearly 
exceeds 0.5, this is counter-evidence to a MA(1).

[ ] 0tE X 

| (1) | 0.5 
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MA(1): Example
• daily return of an AT&T bond from 04/1975 to 12/1975

• the time series has 192 observations

• we are looking at the first-order differences

• an MA(1) model seems to fit the data ( next slide)

• since we are looking at a differenced series, this is in fact
an ARIMA(0,1,1) model ( will be discussed later…) 
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MA(1): Example
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MA(q)-Models
The MA(q)-model is defined as follows:

,

where      are i.i.d. innovations (=a white noise process). 

The ACF of this process can be computed from the coefficients:

,   for all k=1,…, q with 

,                for all k>q

tE
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ACF/PACF of MA(q)
ACF
• the ACF of an MA(q) has a cut-off at lag k=q

• it behaves thus like the PACF of an AR(q)-model

PACF
• the PACF is (again) complicated to determine, but:

• the PACF of an MA(q) has an „exponential decay“

• it behaves thus like the ACF of an AR-model
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MA(4): Example
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ARMA(p,q)-Models
An ARMA(p,q)-model combines AR(p) and MA(q):

where      are i.i.d. innovations (=a white noise process). 

It‘s easier to write an ARMA(p,q) with the characteristic polynom:

, where

is the cP of the AR-part, and

is the cP of the MA-part

tE
1 1 1 1... ...t t p t p t t q t qX X X E E E            

( ) ( )t tB X B E  

1( ) 1 ... p
pz z z    

1( ) 1 ... q
qz z z    
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Stationarity/Invertibility of ARMA(p,q)
• both properties are determined by the cP

• the AR-cP determines stationarity

• the MA-cP determines invertibility

• condition: roots of the cP outside of the unit circle 

• stationarity: model can be written as a MA(∞)

• invertibility: model can be written as an AR(∞)
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True ACF/PACF of an ARMA(2,1)
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Simulated ACF/PACF of an ARMA(2,1)
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Properties of ACF/PACF in ARMA(p,q)
ACF PACF

AR(p) exponential decay cut-off at lag p

MA(q) cut-off at lag q exponential decay

ARMA(p,q) as AR(p) for k>q as MA(q) for k>p

 all linear time series processes can be approximated by
an ARMA(p,q) with possibly large p,q. They are thus are 
very rich class of models.
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Fitting ARMA(p,q)
What needs to be done?

1) Achieve stationarity
 transformations, differencing, modeling, …

2) Choice of the order
 determining (p,q)

3) Parameter estimation
 Estimation of   

4) Residual analysis
 if necessary, repeat 1), and/or 2)-4) 

2, , , E   
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Identification of the Order (p,q)
Please note:

• We only have one single realization of the time series
with finite length.

• The plots (etc.) we base the order choice on are not
„facts“, but are estimations with uncertainty.

• This holds especially for the ACF/PACF plots.

• Every ARMA(p,q) can be written as AR(∞) or MA(∞)

 There is usually >1 model that describes the data well.
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ARMA(p,q)-Modeling
Make it stationary

Start                     

Is the time series plot stationary?

Is the ACF going to zero?

Check ACF/PACF

MA AR ARMA
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Parameter Estimation
For parameter estimation with AR(p) models, we had 4 choices:

a) Regression
b) Yule-Walker
c) Maximum-Likelihood
d) Burg‘s Algorithm

For ARMA(p,q) models, only two options are remaining, and 
both of them require numerical optimization:

1) Conditional Sum of Squares
2) Maximum-Likelihood



29Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 06 

Conditional Sum of Squares
Idea: This is an iterative approach where the parameters 

are determined such that the sum of squared errors 
(between observations and fitted values) are minimal.

This requires starting values which are chosen as:

A numerical search is used to find the parameter 
values that minimize the entire conditional sum of 
squares. They also serve as starting values for MLE.

2 2
1 1 1 1

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ( ,..., ) ( ( ... )
n n

q t t t t q
t t

S E X E E    
 

     

0 1 1
ˆ ˆ ˆ0, 0, ..., 0qE E E   
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Maximum-Likelihood-Estimation
Idea: Determine the parameters such that, given the observed 

time series x1,…,xn, the resulting model is the most 
plausible (i.e. the most likely) one.

 This requires the choice of a probability distribution 
for the time series X = (X1, …, Xn)
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Maximum-Likelihood-Estimation
If we assume the ARMA(p,q)-model 

and i.i.d. normally distributed innovations 

the time series vector has a multivariate normal distribution

with covariance matrix V that depends on the model parameters
,     and      . 

2~ (0, )t EE N 

1( ,..., ) ~ ( 1, )nX X X N V 

 2
E

1 1 1 1... ...t t p t p t t q t qX X X E E E            


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Maximum-Likelihood-Estimation
We then maximize the density of the multivariate normal distribution
with respect to the parameters

,   ,      and .

The observed x-values are hereby regarded as fixed values.

 This is a highly complex non-linear optimization
problem that requires sophisticated algorithms
and starting values which are usually provided
by CSS (at least that's the default in R's arima()).

 2
E
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Maximum-Likelihood-Estimation
> r.Pmle <- arima(d.Psqrt,order=c(2,0,0),include.mean=T)

> r.Pmle

Call: arima(x=d.Psqrt, order=c(2,0,0), include.mean=T)

Coefficients:

ar1    ar2  intercept

0.275  0.395      3.554

s.e.  0.107  0.109      0.267

sigma^2 = 0.6:  log likelihood = -82.9,  aic = 173.8
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MLE: Remarks
• The MLE approach would work for any distribution. 

However, for innovation distributions other than
Gaussian, the joint distribution might be „difficult“.

• For „reasonable“ deviations from the normality
assumption, MLE still yields „good“ results. 

• Besides the parameter estimates, we also obtain an 
estimate of their standard error

• Other software packages such as for example SAS 
don't rely on MLE, but use CSS, which is in spirit similar
to Burg's algorithm. 
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Douglas Fir: Original Data
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Douglas Fir: Differenced Series
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Douglas Fir: Differenced Series
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Residuals of MA(1)
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Residuals of ARMA(1,1)
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Another Example: Fitting ARMA(p,q)
What needs to be done?

1) Achieve stationarity
 transformations, differencing, modeling, …

2) Choice of the order
 determining (p,q), plus integration order d for ARIMA

3) Parameter estimation
 ML-estimation of     ,    ,    ,

4) Residual analysis
 if necessary, repeat 1), and/or 2)-4) 

  2
E
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The Series, ACF and PACF
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Model 1: AR(4)
> fit1

Call: arima(x = my.ts, order = c(4, 0, 0))

Coefficients:

ar1      ar2     ar3      ar4  intercept

1.5430  -1.2310  0.7284  -0.3000     0.6197

s.e.  0.0676   0.1189  0.1189   0.0697     0.2573

sigma^2=0.8923,  log likelihood=-273.67,  aic=559.33
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Residuals of Model 1: AR(4)
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Model 2: MA(3)
> fit2

Call: arima(x = my.ts, order = c(0, 0, 3))

Coefficients:

ma1     ma2     ma3  intercept

1.5711  1.0056  0.3057     0.6359

s.e.  0.0662  0.0966  0.0615     0.2604

sigma^2=0.9098,  log likelihood=-275.64,  aic=561.29
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Residuals of Model 2: MA(3)
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Model 3: ARMA(1,1)
> fit3

Call: arima(x = my.ts, order = c(1, 0, 1))

Coefficients:

ar1     ma1  intercept

0.6965  0.7981     0.6674

s.e.  0.0521  0.0400     0.3945

sigma^2=0.9107, log likelihood=-275.72,  aic=559.43
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Residuals of Model 3: ARMA(1,1)
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Model 4: ARMA(2,1)
> fit4

Call: arima(x = my.ts, order = c(2, 0, 1))

Coefficients:

ar1      ar2     ma1  intercept

0.8915  -0.2411  0.7061     0.6420

s.e.  0.0855   0.0856  0.0625     0.3208

sigma^2=0.8772, log likelihood=-272.01, aic=554.02
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Residuals of Model 4: ARMA(2,1)
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Model 5: ARMA(4,1)
> fit5

Call: arima(x = my.ts, order = c(4, 0, 1))

Coefficients:

ar1      ar2     ar3      ar4     ma1  intercept

1.0253  -0.4693  0.2190  -0.1280  0.5733     0.6312

s.e.  0.1725   0.2658  0.2124   0.1062  0.1653     0.2930

sigma^2=0.8708, log likelihood=-271.3, aic = 556.59
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Residuals of Model 5: ARMA(4,1)
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Summary of the Order Choice Problem
• Regarding ACF/PACF, all 5 models are plausible

 ARMA(2,1) would be my favorite

• The residuals look fine (i.e. independent) for all 5 models
 no further evidence for a particular model

• Regarding AIC, the ARMA models do better
 ARMA(2,1) would be my favorite

• Significance of the coefficients
 excludes the ARMA(4,1) as the last contender

Best choice: ARMA (2,1)


