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Where are we?

For much of the rest of this course, we will deal with (weakly)
stationary time series. They have the following properties:

° E[Xt]:/u
. Var(X,)=o"
o Cov(X, X, ,)=7

If a time series Is non-stationary, we know how to decompose
Into deterministic and stationary, random part.

Our forthcoming goals are:
- understanding the dependency In a stationary series
- modeling this dependency and generate forecasts

ich University of Applied Sciences



Applied Time Series Analysis
FS 2012 — Week 04

Autocorrelation

The aim of this section is to explore the dependency structure
within a time series.

Def: Autocorrelation

COV(Xt+k’ Xt)
\/Var(XHk) 'Var(xt)
The autocorrelation is a dimensionless measure for the

amount of linear association between the random variables
collinearity between the random variables X,,, and X, .

p(K) =Cor (X, X,) =
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Interpretation of Autocorrelations
How to interpret autocorrelation from a practical viewpoint?
- We e.g. assume that p(k) =0.7.

-> Then, the square of the correlation coefficient, I.e.
p(k)* =0.49, , is the percentage of variability explained
by the linear association between X, and its respective
predecessor X, ;.

- Here in our example, X, accounts for roughly 49%
of the variability observed in random variable X,.

- From this we can also conclude that any p(k) <0.4
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Autocorrelation Estimation: lag k

How does it work?

- Plug-in estimate with sample covariance

7(K) _ Cov(X,, X i)
7(0)  Var(X,)

p(k) =

n—k
where 7 ==, (X, ~R)(x, ~%)
s=1
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Application: Variance of the Arithmetic Mean

Practical problem: we need to estimate the mean of a realized/
observed time series. We would like to attach a standard error.

« If we estimate the mean of a time series without taking into
account the dependency, the standard error will be flawed.

* This leads to misinterpretation of tests and confidence
Intervals and therefore needs to be corrected.

» The standard error of the mean can both be over-, but also
underestimated. This depends on the ACF of the series.

- For the derivation, see the blackboard...
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Outlook to AR(p)-Models

Suppose that E, is an 1.i.d random process with zero mean and
. 2 . .

variance o. Then a random process X, is said to be an auto-

regressive process of order p if

Xi=og X +..+a X _ +E

This is similar to a multiple regression model, but X;is regressed
not on independent variables, but on past values of itself. Hence
the term auto-regressive.

We use the abbreviation AR(p).

ich University of Applied Sciences



Applied Time Series Analysis
FS 2012 — Week 04

Partial Autocorrelation Function (PACF)

The k™ partial autocorrelation 7z, is defined as the correlation

between X,,, and X, given all the values in between.

7Z-k — Cor(xt+k’ Xt | Xt+1 — Xt+1’ "t Xt+k—1 — Xt+k—1)
Interpretation:

« Given a time series X,, the partial autocorrelation of lag k, is
the autocorrelation between X, and X, with the linear
dependence of X, , through to X, , , removed.

 One can draw an analogy to regression. The ACF measu-
res the ,simple” dependence between X, and X, , whereas
the PACF measures that dependence in a ,multiple* fashion.
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Facts About the PACF and Estimation

We have:

* L =hH
2
¢« T,= £ '21 for AR(1) models, we have 7, =0,
1-p,

2
because p, = o,

* For estimating the PACF, we utilize the fact that for any
AR(p) model, we have: 7 =« and 7, =0 for all k> p.

Thus, for finding 7, we fit an AR(p) model to the series
for various orders p and set 7%p = o?p

Marcel Dettling, Zurich University of Applied Sciences



Applied Time Series Analysis
FS 2012 — Week 04

Facts about the PACF

Estimation of the PACF is implemented in R.

The first PACF coefficient is equal to the first ACF coefficient.

Subsequent coefficients are not equal, but can be derived
from each other.

For a time series generated by an AR(p)-process, the pth
PACF coefficient is equal to the p™ AR-coefficient. All PACF
coefficients for lags k > p are equal to O.

Confidence bounds also exist for the PACF.
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Basics of Modeling

Simulation

(Time Series) Model >  Data

Estimation

Inference
Residual Analysis

Data > (Time Series) Model
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A Simple Model: White Noise

A time series (W,,W,,...,W_) is a White Noise series if the random
variables W;,W,,... are independent and identically distributed with
mean zero.

This imples that all variables W, have the same variance o, , and
Cov(W,,W;)=0 forall I+ ].
Thus, there are no autocorrelations either: p, =0 forall k #0.

If in addition, the variables also follow a Gaussian distribution, I1.e.
W, ~ N(O,gvf/) , the series is called Gaussian White Noise.
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Example: Gaussian White Noise

Gaussian White Noise

0 50 100 150

Time
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Example: Gaussian White Noise

ACF of Gaussian White Noise
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Time Series Modeling

There Is a wealth of time series models

- AR autoregressive model

- MA moving average model

- ARMA combination of AR & MA
- ARIMA non-stationary ARMAS

- SARIMA seasonal ARIMASs

Autoregressive models are among the simplest and most
Intuitive time series models that exist.
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Basic Idea for AR-Models

We have a time series where, resp. we model a time series such
that the random variable X, depends on a linear combination of
the preceding ones X, _,,..., Xt_p , plus a ,completely independent*
term called innovation E..

Xi=a X +..+a, X _ +E

p is called the order of the AR-model. We write AR(p). Note that
there are some restrictions to E,.
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AR(1)-Model

The simplest model is the AR(1)-model
X=X, +E

where

E, isiidwith E[E,]=0 and Var(E,) = o;

Under these conditions, E, is a white noise process, and we
additionally require causality, i.e. E, being an innovation:

E, is independent of X_,S <t

Marcel Dettling, Zurich University of Applied Sciences
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Causality

Note that causality is an important property that, despite the fact
that it's missing in much of the literature, is necessary in the
context of AR-modeling:

E, is an innovation process - E, all are independent

All E, are independent XEt IS an innovation
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Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=0.7
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Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=-0.7
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Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=1
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Moments of the AR(1)-Process

Some calculations with the moments of the AR(1)-process give
Insight into stationarity and causality

Proof: See blackboard...
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Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=0.7
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Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha_1=-0.7
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AR(p)-Model
We here introduce the AR(p)-model

Xi=a X +..+a,X_ +E
where again

E, isi.i.d with E[E,]=0 and Var(E,) = o
Under these conditions, E, is a white noise process, and we
additionally require causality, Ii.e. E, being an innovation:

E, is independent of X_,S <t
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Mean of AR(p)-Processes
As for AR(1)-processes, we also have that:
(X,),.r is from a stationary AR(p) => E[X,]=0
Thus: If we observe a time series with E[ X, ] = # # 0, it cannot

be, due to the above property, generated by an AR(p)-
process

But: In practice, we can always de-“mean” (i.e. center) a
stationary series and fit an AR(p) model to it.
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Yule-Walker-Equations
On the blackboard...

We observe that there exists a linear equation system built up from
the AR(p)-coefficients and the ACF-coefficients of up to lag p.
These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series
2) Plug-in the estimates into the Yule-Walker-Equations
3) The solution are the AR(p)-coefficients
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Stationarity of AR(p)-Processes
We require:
1) E[X,]=u=0
2) Conditions on (&, ..., &)
All (complex) roots of the characteristic polynom
l-az—a,z° —a,2° =0

need to lie outside of the unit circle. This can be
checked with R-function polyroot()
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A Non-Stationary AR(2)-Process

X, = % X4 +% X, , + E, is not stationary...

Non-Stationary AR(2)
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Fitting AR(p)-Models

This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?
- will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients
- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

3) Residual Analysis
- to be discussed
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AR-Modelling
1 2 3

ldentification Parameter Model
of the Order p Estimation Diagnostics
- ACF/PACF - Regression - Residual Analysis
- AIC/BIC - Yule-Walker - Simulation

- MLE

- Burg
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Is an AR(p) suitable, and what is p?

- For all AR(p)-models, the ACF decays exponentially
quickly, or is an exponentially damped sinusoid.

- For all AR(p)-models, the PACF is equal to zero for
all lags k>p.

If what we observe is fundamentally different from the above, it Is
unlikely that the series was generated from an AR(p)-process. We
thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities and is
tricky to interpret!!!
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Model Order for sqrt(purses)
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Model Order for log(lynx)
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