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Where are we?
For much of the rest of this course, we will deal with (weakly) 
stationary time series. They have the following properties:

•
•
•

If a time series is non-stationary, we know how to decompose
into deterministic and stationary, random part. 

Our forthcoming goals are:
- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts

[ ]tE X 
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Autocorrelation
The aim of this section is to explore the dependency structure
within a time series.

Def: Autocorrelation

The autocorrelation is a dimensionless measure for the
amount of linear association between the random variables 
collinearity between the random variables          and .
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Interpretation of Autocorrelations
How to interpret autocorrelation from a practical viewpoint?

We e.g. assume that                 .

 Then, the square of the correlation coefficient, i.e.
, , is the percentage of variability explained 

by the linear association between      and its respective 
predecessor       . 

Here in our example,        accounts for roughly 49%
of the variability observed in random variable     .

 From this we can also conclude that any                 
is not a very strong association, i.e. has small effect. 

( ) 0.7k 

2( ) 0.49k 
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( ) 0.4k 
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Autocorrelation Estimation: lag k
How does it work? 

 Plug-in estimate with sample covariance

where

and

1

1ˆ( ) ( )( )
n k

s k s
s

k x x x x
n







  

1

1 n

t
t

x x
n 

 

ˆ ( , )( )ˆ ( )
ˆ(0) ( )

t t k

t

Cov X Xkk
Var X




 



6Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 04

Application: Variance of the Arithmetic Mean
Practical problem: we need to estimate the mean of a realized/ 
observed time series. We would like to attach a standard error.

• If we estimate the mean of a time series without taking into
account the dependency, the standard error will be flawed. 

• This leads to misinterpretation of tests and confidence
intervals and therefore needs to be corrected.

• The standard error of the mean can both be over-, but also 
underestimated. This depends on the ACF of the series.

 For the derivation, see the blackboard…



7Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 04

Outlook to AR(p)-Models
Suppose that Et is an i.i.d random process with zero mean and
variance . Then a random process Xt is said to be an auto-
regressive process of order p if

This is similar to a multiple regression model, but Xt is regressed
not on independent variables, but on past values of itself. Hence
the term auto-regressive. 

We use the abbreviation AR(p).  

2
E

1 1 ...t t p t p tX X X E     
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Partial Autocorrelation Function (PACF)
The  partial autocorrelation is defined as the correlation
between and , given all the values in between.

Interpretation:

• Given a time series    , the partial autocorrelation of lag k, is 
the autocorrelation between     and         with the linear 
dependence of        through to removed.

• One can draw an analogy to regression. The ACF measu-
res the „simple“ dependence between and , whereas
the PACF measures that dependence in a „multiple“ fashion.

t kX tX

kthk
t kX  tX

1 1 1 1( , | ,..., )k t k t t t t k t kCor X X X x X x         

tX
tX t kX 

1tX  1t kX  
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Facts About the PACF and Estimation
We have:

•

• for AR(1) models, we have ,
because

• For estimating the PACF, we utilize the fact that for any
AR(p) model, we have:               and for all          .

Thus, for finding , we fit an AR(p) model to the series
for various orders p and set

1 1 
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Facts about the PACF
• Estimation of the PACF is implemented in R.

• The first PACF coefficient is equal to the first ACF coefficient. 
Subsequent coefficients are not equal, but can be derived
from each other.

• For a time series generated by an AR(p)-process, the
PACF coefficient is equal to the AR-coefficient. All PACF 
coefficients for lags are equal to 0.

• Confidence bounds also exist for the PACF.

thp
thp

k p
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Basics of Modeling

(Time Series) Model  Data

Data       (Time Series) Model

Simulation

Estimation
Inference

Residual Analysis
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A Simple Model: White Noise
A time series                        is a White Noise series if the random 
variables                are independent and identically distributed with 
mean zero.

This imples that all variables      have the same variance       , and

for all          . 

Thus, there are no autocorrelations either:             for all          .  

If in addition, the variables also follow a Gaussian distribution, i.e.
, the series is called Gaussian White Noise.

1 2( , ,..., )nW W W
1 2, ,...W W

tW 2
W

( , ) 0i jCov W W  i j

0k  0k 

2~ (0, )t WW N 
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Example: Gaussian White Noise

Time
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Example: Gaussian White Noise
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Time Series Modeling
There is a wealth of time series models

- AR autoregressive model
- MA moving average model
- ARMA combination of AR & MA
- ARIMA non-stationary ARMAs
- SARIMA seasonal ARIMAs
- …

Autoregressive models are among the simplest and most 
intuitive time series models that exist.
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Basic Idea for AR-Models
We have a time series where, resp. we model a time series such 
that the random variable      depends on a linear combination of
the preceding ones , plus a „completely independent“ 
term called innovation .  

p is called the order of the AR-model. We write AR(p). Note that
there are some restrictions to . 

1,...,t t pX X 

tE

1 1 ...t t p t p tX X X E     

tE

tX
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AR(1)-Model
The simplest model is the AR(1)-model

where      

is i.i.d with                  and

Under these conditions,      is a white noise process, and we 
additionally require causality, i.e.     being an innovation: 

is independent of 

tE

tE

1 1t t tX X E  

[ ] 0tE E  2( )t EVar E 

tE

,sX s ttE
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Causality
Note that causality is an important property that, despite the fact 
that it‘s missing in much of the literature, is necessary in the 
context of AR-modeling:

is an innovation process  all are independent

All        are independent        is an innovationtE tE
tEtE
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=0.7
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=-0.7
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=1
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Moments of the AR(1)-Process
Some calculations with the moments of the AR(1)-process give 
insight into stationarity and causality

Proof: See blackboard…
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Theoretical vs. Estimated ACF
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Theoretical vs. Estimated ACF
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AR(p)-Model
We here introduce the AR(p)-model

where again     

is i.i.d with                  and

Under these conditions,      is a white noise process, and we 
additionally require causality, i.e.     being an innovation: 

is independent of 

tE

tE

[ ] 0tE E  2( )t EVar E 

tE

,sX s ttE
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Mean of AR(p)-Processes
As for AR(1)-processes, we also have that:

is from a stationary AR(p)   => 

Thus: If we observe a time series with                          , it cannot 
be, due to the above property, generated by an AR(p)-
process 

But: In practice, we can always de-“mean“ (i.e. center) a 
stationary series and fit an AR(p) model to it.

[ ] 0tE X ( )t t TX 

[ ] 0tE X  
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Yule-Walker-Equations
On the blackboard…

We observe that there exists a linear equation system built up from 
the AR(p)-coefficients and the ACF-coefficients of up to lag p. 
These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series
2) Plug-in the estimates into the Yule-Walker-Equations
3) The solution are the AR(p)-coefficients
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Stationarity of AR(p)-Processes
We require:

1) 

2) Conditions on

All (complex) roots of the characteristic polynom

need to lie outside of the unit circle. This can be
checked with R-function polyroot()

[ ] 0tE X  

1( ,..., )p 

2
1 21 0p

pz z z     
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A Non-Stationary AR(2)-Process 
is not stationary… 1 2

1 1
2 2t t t tX X X E   

Non-Stationary AR(2)
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Fitting AR(p)-Models
This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?
- will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients
- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

3) Residual Analysis
- to be discussed
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AR-Modelling

1                                  2                                     3

Identification Parameter Model
of the Order p Estimation Diagnostics

- ACF/PACF - Regression - Residual Analysis
- AIC/BIC - Yule-Walker - Simulation

- MLE
- Burg
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Is an AR(p) suitable, and what is p?
- For all AR(p)-models, the ACF decays exponentially 

quickly, or is an exponentially damped sinusoid.

- For all AR(p)-models, the PACF is equal to zero for 
all lags k>p.

If what we observe is fundamentally different from the above, it is 
unlikely that the series was generated from an AR(p)-process. We 
thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities and is 
tricky to interpret!!!
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Model Order for sqrt(purses)
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Model Order for log(lynx)
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