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AR(p)-Model
We here introduce the AR(p)-model

where again

is i.i.d with and

Under these conditions,      is a white noise process, and we
additionally require causality, i.e.     being an innovation: 

is independent of
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Fitting AR(p)-Models
This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?
- will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients
- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

3) Residual Analysis
- to be discussed
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AR-Modelling

1                                  2                                     3

Identification Parameter Model
of the Order p Estimation Diagnostics

- ACF/PACF - Regression - Residual Analysis
- AIC/BIC - Yule-Walker - Simulation

- MLE
- Burg
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Is an AR(p) suitable, and what is p?
- For all AR(p)-models, the ACF decays exponentially 

quickly, or is an exponentially damped sinusoid.

- For all AR(p)-models, the PACF is equal to zero for 
all lags k>p.

If what we observe is fundamentally different from the above, it is 
unlikely that the series was generated from an AR(p)-process. We 
thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities and is 
tricky to interpret!!!



6Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 05
Model Order for sqrt(purses)
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Model Order for log(lynx)
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Basic Idea for Parameter Estimation
We consider the stationary AR(p)

where we need to estimate

model parameters

innovation variance

general mean
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Approach 1: Regression
Response variable: ,    t = 1,…,n-p

Explanatory variables:         ,   t = 2,…,n-p+1
, t = 3,…,n-p+2 

…
, t = p+1,…,n

We can now use the regular LS framework. The coefficient
estimates then are the estimates for . Moreover, we have

and
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Approach 1: Regression
Preparing the design matrix

> d.Psqrt <- sqrt(Purses)

> d.Psqrt.mat <- ts.union(Y=d.Psqrt,X1=lag(d.Psqrt,-1),X2=lag(d.Psqrt,-2))

> d.Psqrt.mat[1:5,]

Y    X1    X2

[1,] 3.162    NA    NA

[2,] 3.873 3.162    NA

[3,] 3.162 3.873 3.162

[4,] 3.162 3.162 3.873

[5,] 3.464 3.162 3.162
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Approach 1: Regression
Fitting the LS model

> r.Pfit <- lm(Y ~ .,data=data.frame(d.Psqrt.mat))

> summary(r.Pfit)

Call: lm(formula = Y ~ ., data = data.frame(d.Psqrt.mat))

Residuals:    Min      1Q  Median      3Q     Max 

-2.0925 -0.4088 -0.0536  0.4286  1.9774 

Coefficients:

Estimate Std. Error t value Pr(>|t|)  

(Intercept)    1.117      0.448    2.49  0.01513 * 

X1             0.283      0.113    2.50  0.01474 *  

X2             0.403      0.114    3.53  0.00077 ***
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Approach 1: Regression
Output from the LS model

Residual standard error: 0.8 on 66 degrees of freedom

Multiple R-Squared: 0.332,      Adjusted R-squared: 0.312 

F-statistic: 16.4 on 2 and 66 DF,  p-value: 1.64e-006 

Thus we have:

1 2ˆ ˆ0.283, 0.403  
1.117ˆ 3.56

1 0.283 0.403
  

 
2 2ˆ (0.8004) 0.64E  
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Overview of the Estimates

Regression Yule-Walker MLE Burg

0.283 - - -

0.403 - - -

3.56 - - -

0.64 - - -

1̂

2̂

̂
2ˆE
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Approach 2: Yule-Walker
The Yule-Walker-Equations yield a LES that connects the true ACF 
with the true AR-model parameters. We plug-in the estimated ACF 
coefficients

for k=1,…,p

and can solve the LES to obtain the AR-parameter estimates.

is the arithmetic mean of the time series
is the estimated variance of the residuals

 see example on the blackboard for an AR(2)-model

1ˆ ˆ ˆ ˆ ˆ( ) ( 1) ... ( )pk k k p        
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Approach 2: Yule-Walker
The Yule-Walker-Estimation is implemented in R

> ar.yw(sqrt(purses))

Call: 

ar.yw.default(x = sqrt(purses))

Coefficients:

1       2  

0.2766  0.3817  

Order selected 2  sigma^2 estimated as  0.639 
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Overview of the Estimates

Regression Yule-Walker MLE Burg

0.283 0.277 - -

0.403 0.382 - -

3.56 3.61 - -

0.64 0.64 - -

1̂

2̂

̂
2ˆE
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Approach 3: Maximum-Likelihood-Estimation
Idea: Determine the parameters such that, given the observed 

time series x1,…,xn, the resulting model is the most 
plausible (i.e. the most likely) one.

 This requires the choice of a probability distribution for 
the time series X = (X1, …, Xn)
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Approach 3: Maximum-Likelihood-Estimation
If we assume the AR(p)-model 

and i.i.d. normally distributed innovations 

the time series vector has a multivariate normal distribution

with covariance matrix V that depends on the model parameters
and      . 

1 1( ) ( ) ... ( )t t p t p tX X X E           
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Approach 3: Maximum-Likelihood-Estimation
We then maximize the density of the multivariate normal distribution 
with respect to the parameters

,      and       .

The observed x-values are hereby regarded as fixed values.

 This is a highly complex non-linear optimization 
problem that requires sophisticated algorithms.

 2ˆE
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Approach 3: Maximum-Likelihood-Estimation
> r.Pmle <- arima(d.Psqrt,order=c(2,0,0),include.mean=T)

> r.Pmle

Call: arima(x=d.Psqrt, order=c(2,0,0), include.mean=T)

Coefficients:

ar1    ar2  intercept

0.275  0.395      3.554

s.e.  0.107  0.109      0.267

sigma^2 = 0.6:  log likelihood = -82.9,  aic = 173.8
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Overview of the Estimates

Regression Yule-Walker MLE Burg

0.283 0.277 0.275 -

0.403 0.382 0.395 -

3.56 3.61 3.55 -

0.64 0.64 0.6 -

1̂

2̂

̂
2ˆE
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Approach 4: Burg‘s Algorithm
Idea: Use non-linear optimization to minimize the in-sample 

forecasting error of a time-reversible stationary process. 

 This estimation is distribution free!

In R: > ar.burg(d.Psqrt, order=2, demean=TRUE)

2 2

1 1 1

p pn

t k t k t p k t p k
t p k k

X X X X    
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           
     
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Overview of the Estimates

Regression Yule-Walker MLE Burg

0.283 0.277 0.275 0.272

0.403 0.382 0.395 0.397

3.56 3.61 3.55 3.61

0.64 0.64 0.6 0.6
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Summary of Estimation Methods
Regression:
+ simple, no specific procedures required
- resulting AR(p) non-stationary, distribution assumption

Yule-Walker:
+ easy to understand, no specific procedures required
- estimates will be biased, especially for short series

MLE:
+ solves the problem „as a whole“, good theory behind
- heavy computation, convergence, distribution assumption

Burg:
+ prediction oriented, no distribution assumption
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Comparison: Alpha Estimation vs. Method

LS YW MLE Burg
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Comparison: Alpha Estimation vs. n

n=20 n=50 n=100 n=200

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Comparison for Series Length n: alpha=0.4, method=Burg



27Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 05
Comparison: Sigma Estimation vs. Method

LS YW MLE Burg
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Comparison: Sigma Estimation vs. n

n=20 n=50 n=100 n=200

0.
5

1.
0

1.
5

2.
0

Comparison for Series Length n: sigma=1, method=Burg



29Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 05

Variance of the Arithmetic Mean
If we estimate the mean of a time series without taking into 
account the dependency, the standard error will be flawed. 

This leads to misinterpretation of tests and confidence intervals 
and therefore needs to be corrected.

The standard error of the mean can both be over-, but also 
underestimated. This depends on the ACF of the series.
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Computation in Practice
For adjusting the variance of the arithmetic mean do either:

1) Estimate the theoretical ACF from the estimated AR-model

> ARMAacf(ar = ar.coef, lag.max = r, pacf = FALSE) 

and plug-in the result into the formula

2) Work with function arima()

> arima(sqrt(purses),order=c(2,0,0),include.mean=T)

ar1     ar2  intercept

0.2745  0.3947     3.5544

s.e.  0.1075  0.1089     0.2673 

This directly gives the mean’s standard deviation.
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Model Diagnostics
What we do here is Residual Analysis:

„residuals“ = „estimated innovations“

= 

=

Remember the assumptions we made:

i.i.d,                 ,

and probably

ˆ
tE
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Model Diagnostics
We check the assumptions we made with the following means:

a) Time series plot of

b) ACF/PACF plot of

c) QQ-plot of

 The innovation time series should look like white noise

Purses example:
fit <- arima(sqrt(purses), order=c(2,0,0), include.mean=T)

acf(resid(fit)); pacf(resid(fit))

ˆ
tE

ˆ
tE

ˆ
tE

ˆ
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Model Diagnostics: sqrt(purses) data, AR(2)
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Model Diagnostics: sqrt(purses) data, AR(2)
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Model Diagnostics: log(lynx) data, AR(2)
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Model Diagnostics: log(lynx) data, AR(2)
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AIC/BIC
If several alternative models show satisfactory residuals, using 
the information criteria AIC and/or BIC can help to choose the 
most suitable one:

AIC = 
BIC = 

where                                                    

= „Likelihood Function“
p is the number of parameters and equals p or p+1
n is the time series length

Goal: Minimization of AIC and/or BIC

2log( ) 2L p 
2log( ) 2 log( )L n p 

2 2( , , ) ( , , , )L f x     
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AIC/BIC
We need (again) a distribution assumption in order to compute 
the AIC and/or BIC criteria. Mostly, one relies again on i.i.d. 
normally distributed innovations. Then, the criteria simplify to:

AIC = 
BIC = 

Remarks:

 AIC tends to over-, BIC to underestimate the true p

 Plotting AIC/BIC values against p can give further insight. 
One then usually chooses the model where the last 
significant decrease of AIC/BIC was observed

2ˆlog( ) 2En p 
2ˆlog( ) 2 log( )En n p 
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AIC/BIC
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Model Diagnostics: log(lynx) data, AR(11)
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Diagnostics by Simulation
As a last check before a model is called appropriate, simulating 
from the estimated coefficients and visually inspecting the 
resulting series (without any prejudices) to the original can be 
done.

 The simulated series should „look like“ the original. If 
this is not the case, the model failed to capture (some 
of) the properties of the original data.



42Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 05
Diagnostics by Simulation, AR(2)
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Diagnostics by Simulation, AR(11)
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