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Descriptive Decomposition
It is convenient to describe non-stationary time series with a 
simple decomposition model

= trend + seasonal effect + stationary remainder

The modelling can be done with:

1) taking differences with appropriate lag (=differencing) 
2) smoothing approaches (= filtering)
3) parametric models (= curve fitting)
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Parametric Modelling
When to use?

 Parametric modelling is often used if we have previous 
knowledge about the trend following a functional form.

 If the main goal of the analysis is forecasting, a trend in 
functional form may allow for easier extrapolation than a 
trend obtained via smoothing.

 It can also be useful if we have a specific model in mind 
and want to infer it. Caution: correlated errors!
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Parametric Modelling: Example
Maine unemployment data: Jan/1996 – Aug/2006

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006
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Modeling the Unemployment Data
Most often, time series are parametrically decomposed by using
regression models. For the trend, polynomial functions are widely
used, whereas the seasonal effect is modelled with dummy
variables (= a factor).

where

Remark: choice of the polynomial degree is crucial!
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Polynomial Order / OLS Fitting
Estimation of the coefficients will be done in a regression con-
text. We can use the ordinary least squares algorithm, but: 

•   we have violated assumptions,      is not uncorrelated
•   the estimated coefficients are still unbiased
•   standard errors (tests, CIs) can be wrong

Which polynomial order is required?

Eyeballing allows to determine the minimum grade that is 
required for the polynomial. It is at least the number of 
maxima the hypothesized trend has, plus one.

tE
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Important Hints for Fitting
• The main predictor used in polynomial parametric modeling

is the time of the observations. It can be obtained by typing
time(maine).  

• For avoiding numerical and collinearity problems, it is
essential to center the time/predictors!

• R sets the first factor level to 0, seasonality is thus
expressed as surplus to the January value.

• For visualization: when the trend must fit the data, we have
to adjust, because the mean for the seasonal effect is
usually different from zero!
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Trend of O(4), O(5) and O(6)
Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006
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O(4)
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Residual Analysis: O(4)

Residuals vs. Time, O(4)

Time
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Residual Analysis: O(5)

Residuals vs. Time, O(5)

Time
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Residual Analysis: O(6)

Residuals vs. Time, O(6)

Time

1996 1998 2000 2002 2004 2006
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Parametric Modeling: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ and are explicitly known, can be visualised

+ even some inference on trend/season is possible

+  time series keeps the original length

- choice of a/the correct model is necessary/difficult

- residuals are correlated: this is a model violation!

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s
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Where are we?
For most of the rest of this course, we will deal with (weakly) 
stationary time series. They have the following properties:

•
•
•

If a time series is non-stationary, we know how to decompose 
into deterministic and stationary, random part. 

Our forthcoming goals are:
- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts

[ ]tE X 
2( )tVar X 

( , )t t h hCov X X  
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Autocorrelation
The aim of this section is to explore the dependency structure
within a time series.

Def: Autocorrelation

The autocorrelation is a dimensionless measure for the
amount of linear association between the random variables 
collinearity between the random variables          and .

( , )( , )
( ) ( )

t k t
t k t

t k t

Cov X XCor X X
Var X Var X









t kX  tX
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Autocorrelation Estimation
Our next goal is to estimate the autocorrelation function (acf) from 
a realization of weakly stationary time series. 

Luteinizing Hormone in Blood at 10min Intervals
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Autocorrelation Estimation: lag k>1
Idea 1: Compute the sample correlation for all pairs ( , )s s kx x 
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Autocorrelation Estimation: lag k
Idea 2: Plug-in estimate with sample covariance

How does it work?

 see blackboard…
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Autocorrelation Estimation: lag k
Idea 2: Plug-in estimate with sample covariance

where

and

1
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Comparison Idea 1 vs. Idea 2
 see blackboard for some more information
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What is important about ACF estimation?
- Correlations are never to be trusted without a visual

inspection with a scatterplot.

- The bigger the lag k, the fewer data pairs remain for 
estimating the acf at lag k.

- Rule of the thumb: the acf is only meaningful up to about

a) lag 10*log10(n)
b) lag n/4

- The estimated sample ACs can be highly correlated.

- The correlogram is only meaningful for stationary series!!!
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Correlogram
A useful aid in interpreting a set of autocorrelation coefficients is 
the graph called correlogram, where the          are plotted 
against the lag k.

Interpreting the meaning of a set of autocorrelation coefficients 
is not always easy. The following slides offer some advice. 

ˆ ( )k
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Random Series – Confidence Bands
If a time series is completely random, i.e. consists of i.i.d. random 
variables     , the (theoretical) autocorrelations         are equal to 0.

However, the estimated         are not. We thus need to decide, 
whether an observed               is significantly so, or just appeared 
by chance. This is the idea behind the confidence bands.  
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Random Series – Confidence Bands
For long i.i.d. time series, it can be shown that the         are 
approximately                 distributed.  

Thus, if a series is random, 95% of the estimated         can be 
expected to lie within the interval 

ˆ ( )k

ˆ ( )k
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Random Series – Confidence Bands
Thus, even for a (long) i.i.d. time series, we expect that 5% of the 
estimated autocorrelation coeffcients exceed the confidence 
bounds. They correspond to type I errors.

Note: the probabilistic properties of non-normal i.i.d series are 
much more difficult to derive.
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Short Term Correlation
Simulated Short Term Correlation Series
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Short Term Correlation
Stationary series often exhibit short-term correlation, characterized 
by a fairly large value of         , followed by a few more coefficients 
which, while significantly greater than zero, tend to get successively 
smaller. For longer lags k, they are close to 0.

A time series which gives rise to such a correlogram, is one for 
which an observation above the mean tends to be followed by one 
or more further observations above the mean, and similarly for 
observations below the mean.

A model called an autoregressive model may be appropriate for 
series of this type.  

ˆ (1)
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Alternating Time Series
Simulated Alternating Correlation Series
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Non-Stationarity in the ACF: Trend
Simulated Series with a Trend
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Non-Stationarity in the ACF: Seasonal Pattern
De-Trended Mauna Loa Data
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ACF of the Raw Airline Data
Airline Data
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Outliers and the ACF
Outliers in the time series strongly affect the ACF estimation!

Beaver Body Temperature
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Outliers and the ACF

36.4 36.6 36.8 37.0 37.2 37.4

36
.4

36
.6

36
.8

37
.0

37
.2

37
.4

Lagged Scatterplot with k=1 for Beaver Data

1 Outlier, appears 2x
in the lagged scatterplot



33Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 03

Outliers and the ACF
The estimates          are very sensitive to outliers. They can be 
diagnosed using the lagged scatterplot, where every single outlier 
appears twice.

Strategy for dealing with outliers:

- if it is an outlier: delete the observation

- replace the now missing observations by either:

a) global mean of the series
b) local mean of the series, e.g. +/- 3 observations
c) fit a time series model and predict the missing value

ˆ ( )k
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General Remarks about the ACF
a) Appearance of the series   =>   Appearance of the ACF

Appearance of the series   <=   Appearance of the ACF

b) Compensation

All autocorrelation coefficients sum up to -1/2. For large 
lags k, they can thus not be trusted, but are at least 
damped. This is a reason for using the rule of the thumb.

1

1

1ˆ ( )
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ACF vs. Lagged Sample Correlations
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How Well Can We Estimate the ACF?
What do we know already?

- The ACF estimates are biased
- At higher lags, we have few observations, and thus variability
- There also is the compensation problem…

 ACF estimation is not easy, and interpretation is tricky.

For answering the question above:

- For an AR(1) time series process, we know the true ACF
- We generate a number of realizations from this process
- We record the ACF estimates and compare to the truth
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Theoretical vs. Estimated ACF

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

A
C

F

True ACF of AR(1)-process with alpha_1=0.7

0 50 100 150 200

-0
.2

0.
2

0.
6

1.
0

Lag

A
C

F

Estimated ACF from an AR(1)-series with alpha_1=0.7



38Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2010 – Week 03

How Well Can We Estimate the ACF?
A) For AR(1)-processes we understand the theoretical ACF

B) Repeat for i=1, …, 1000

Simulate a length n AR(1)-process
Estimate the ACF from that realization

End for

C) Boxplot the (bootstrap) sample distribution of ACF-estimates
Do so for different lags k and different series length n



39Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2010 – Week 03

How Well Can We Estimate the ACF?
Variation in ACF(1) estimation
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How Well Can We Estimate the ACF?
Variation in ACF(2) estimation
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How Well Can We Estimate the ACF?
Variation in ACF(5) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0



42Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2010 – Week 03

How Well Can We Estimate the ACF?
Variation in ACF(10) estimation
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Trivia ACF Estimation
• In short series, the ACF is strongly biased. The consistency 

kicks in and kills the bias only after ~100 observations.

• The variability in ACF estimation is considerable. We observe 
that we need at least 50, or better, 100 observations.

• For higher lags k, the bias seems a little less problematic, but 
the variability remains large even with many observations n.

• The confidence bounds, derived under independence, are 
not very accurate for (dependent) time series.

 Interpreting the ACF is tricky!
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Application: Variance of the Arithmetic Mean
Practical problem: we need to estimate the mean of a realized/ 
observed time series. We would like to attach a standard error.

• If we estimate the mean of a time series without taking into
account the dependency, the standard error will be flawed. 

• This leads to misinterpretation of tests and confidence
intervals and therefore needs to be corrected.

• The standard error of the mean can both be over-, but also 
underestimated. This depends on the ACF of the series.

 For the derivation, see the blackboard…
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Partial Autocorrelation Function (PACF)
The kth partial autocorrelation coefficient              is defined as the 
correlation between the random variables         and     , given all 
the values in between.

Their meaning is best understood by drawing an analogy to simple 
and multiple linear regression. The ACF measures the „simple“ 
dependence between        and     , whereas the PACF measures 
that dependence in a „multiple“ fashion.

( )part k
tXt kX 

1 1 1 1( ) ( , | ,..., )part t k t t t t k t kk Cor X X X x X x         

t kX  tX
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Facts about the PACF
- Estimation of the PACF is complicated and will not be 

discussed in the course. R can do it ;-)

- The first PACF coefficient is equal to the first ACF 
coefficient. Subsequent coefficients are not equal, but can 
be derived from each other.

- For a time series generated by an AR(p)-process, the pth

PACF coefficient is equal to the pth AR-coefficient. All 
PACF coefficients for lags k>p are equal to 0.

- Confidence bounds also exist for the PACF.
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Outlook to AR(p)-Models
Suppose that Zt is an i.i.d random process with zero mean and 
variance     . Then a random process Xt is said to be an auto-
regressive process of order p if

This is similar to a multiple regression model, but Xt is regressed 
not on independent variables, but on past values of itself. Hence 
the term auto-regressive. 

We use the abbreviation AR(p).  

2
Z

1 1 ...t t p t p tX X X Z     


