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Stochastic Model for Time Series
Def: A time series process is a set                of random

variables, where     is the set of times. Each of the random 
variables has a univariate probability distribution    . 

• If we exclusively consider time series processes with 
equidistant time intervals, we can enumerate

• An observed time series is a realization of                          , 
and is denoted with small letters as                       .

• We have a multivariate distribution, but only 1 observation 
(i.e. 1 realization from this distribution) is available. In order 
to perform “statistics”, we require some additional structure.

 ,tX t


,tX t tF

 1,2,3,...T 

 1, , nX X X 
1( , , )nx x x 
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Stationarity
For being able to do statistics with time series, we require that the 
series “doesn’t change its probabilistic character” over time. This is 
mathematically formulated by strict stationarity.

Def: A time series                  is strictly stationary, if the joint 
distribution of the random vector                       is equal to 
the one of                        for all combinations of t, s and k.

 all     are identically distributed
all     have identical expected value
all have identical variance
the autocov depends only on the lag 

 ,tX t
( , , )t t kX X 

( , , )s s kX X 

tX
tX
tX

h

~tX F
[ ]tE X 

2( )tVar X 
( , )t t h hCov X X  
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Stationarity
It is impossible to „prove“ the theoretical concept of stationarity 
from data. We can only search for evidence in favor or against it.

However, with strict stationarity, even finding evidence only is too
difficult. We thus resort to the concept of weak stationarity.

Def: A time series is said to be weakly stationary, if

for all lags

and thus also:

Note that weak stationarity is sufficient for „practical purposes“.

 ,tX t

[ ]tE X 
( , )t t h hCov X X   h

2( )tVar X 
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Testing Stationarity
• In time series analysis, we need to verify whether the series 

has arisen from a stationary process or not. Be careful: 
stationarity is a property of the process, and not of the data.

• Treat stationarity as a hypothesis! We may be able to reject it 
when the data strongly speak against it. However, we can 
never prove stationarity with data. At best, it is plausible. 

• Formal tests for stationarity do exist ( see scriptum). We 
discourage their use due to their low power for detecting 
general non-stationarity, as well as their complexity.

Use the time series plot for deciding on stationarity!
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Evidence for Non-Stationarity
• Trend, i.e. non-constant expected value

• Seasonality, i.e. deterministic, periodical oscillations

• Non-constant variance, i.e. multiplicative error

• Non-constant dependency structure

Remark:

Note that some periodical oscillations, as for example in the 
lynx data, can be stochastic and thus, the underlying process 
is assumed to be stationary. However, the boundary between 
the two is fuzzy.
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Strategies for Detecting Non-Stationarity
1) Time series plot

- non-constant expected value (trend/seasonal effect)
- changes in the dependency structure
- non-constant variance

2) Correlogram (presented later...)
- non-constant expected value (trend/seasonal effect)
- changes in the dependency structure

A (sometimes) useful trick, especially when working with the 
correlogram, is to split up the series in two or more parts, and 
producing plots for each of the pieces separately.
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Example: Simulated Time Series 1

Simulated Time Series Example
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Example: Simulated Time Series 2

Simulated Time Series Example
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Example: Simulated Time Series 3

Simulated Time Series Example
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Example: Simulated Time Series 4

Simulated Time Series Example
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Time Series in R
• In R, there are objects, which are organized in a large 

number of classes. These classes e.g. include vectors, 
data frames, model output, functions, and many more. Not 
surprisingly, there are also several classes for time series. 

• We focus on ts, the basic class for regularly spaced time 
series in R. This class is comparably simple, as it can only 
represent time series with fixed interval records, and only 
uses numeric time stamps, i.e. enumerates the index set.

• For defining a ts object, we have to supply the data, but 
also the starting time (as argument start), and the frequency
of measurements as argument frequency.
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Time Series in R: Example
Data: number of days per year with traffic holdups in front of 
the Gotthard road tunnel north entrance in Switzerland. 

> rawdat <- c(88, 76, 112, 109, 91, 98, 139)
> ts.dat <- ts(rawdat, start=2004, freq=1)

> ts.dat
Time Series: Start = 2004 
End = 2010; Frequency = 1 
[1]  88  76 112 109  91  98 139

2004 2005 2006 2007 2008 2009 2010

88 76 112 109 91 98 139
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Time Series in R: Example
> plot(ts.dat, ylab="# of Days", main="Traffic Holdups")
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Addendum: Daily Data and Leap Years
Example from Exercises:

Rainfall Data, 8 years with daily data from 2000-2007. 
While 2001-2003 and 2005-2007 have 365 days each, 
years 2000 and 2004 are leap years with 366 days. 

• Do never cancel the leap days, and neither introduce 
missing values for Feb 29 in non-leap years. 

• Is this a (deterministically) periodic series? Using the 
Gregorian calendar, we can say the time unit is 4 years, 
and the frequency is                                . 

• Physically, we can say that the frequency equals .

366 (3 365) 1461  

365.25
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Further Topics in R
The scriptum discusses some further topics which are of 
interest when doing time series analysis in R:

• Handling of dates and times in R

• Reading/Importing data into R

 Please thoroughly read and study these chapters. 
Examples will be shown/discussed in the exercises.
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Visualization: Time Series Plot
> plot(tsd, ylab="(%)", main="Unemployment in Maine")

Unemployment in Maine
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")
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Only One or Multiple Frames?
• Due to different scale/units it is often impossible to directly

plot multiple time series in one single frame. Also, multiple 
frames are convenient for visualizing the series.

• If the relative development of multiple series is of interest, 
then we can (manually) index the series and (manually) plot 
them into one single frame.

• This clearly shows the magnitudes for trend and seasonality. 
However, the original units are lost.

• For details on how indexing is done, see the scriptum.
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")
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Descriptive Decomposition
It is convenient to describe non-stationary time series with a 
simple decomposition model

= trend + seasonal effect + stationary remainder

The modelling can be done with:

1) taking differences with appropriate lag (=differencing) 
2) smoothing approaches (= filtering)
3) parametric models (= curve fitting)
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t t t tX m s E  



22Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2012 – Week 02

Differencing: Theory
In the absence of a seasonal effect, a piecewise linear trend of a 
non-stationary time series can by removed by taking differences 
of first order at lag 1:

The new time series     is then going to be stationary, but has 
some new, strong and artificial dependencies. 

If there is a seasonal effect, we have to take first order differences 
at the lag     of the period, which removes both trend and season:

tY

p

1t t tY X X  

t t t pY X X  
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Differencing: Example
Mauna Loa Data: original series, containing trend and season
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Differencing: Example
Mauna Loa Data: first order differences with lag 1

CO2 - Differenzen, lag 1
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Differencing: Example
Mauna Loa Data: first order differences with lag 12

CO2 - Differenzen, lag 12
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Differencing: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be removed

+ procedure is very quick and very simple to implement

- and are not known, and cannot be visualised

- resulting time series will be shorter than the original

- differencing leads to strong artificial dependencies

- extrapolation of ,    is not possible

ˆ tm t̂s

ˆ tm t̂s
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Smoothing, Filtering: Part 1
In the absence of a seasonal effect, the trend of a non-stationary 
time series can be determined by applying any additive, linear 
filter. We obtain a new time series     , representing the trend:

- the window, defined by     and    , can or can‘t be symmetric
- the weights, given by     , can or can‘t be uniformly distributed
- other smoothing procedures can be applied, too.

ˆ
q

t i t i
i p

m a X 


 

ˆ tm

ia
p q
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Smoothing, Filtering: Part 2
In the presence a seasonal effect, smoothing approaches are still 
valid for estimating the trend. We have to make sure that the sum 
is taken over an entire season, i.e. for monthly data: 

An estimate of the seasonal effect     at time    can be obtained by:

By averaging these estimates of the effects for each month, we 
obtain a single estimate of the effect for each month.

6 5 5 6
1 1 1ˆ 7,..., 6

12 2 2t t t t tm X X X X for t n   
        
 



ts t

ˆ ˆt t ts x m 
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Smoothing, Filtering: Part 3
• The smoothing approach is based on estimating the trend

first, and then the seasonality.

• The generalization to other periods than , i.e. monthly
data is straighforward. Just choose a symmetric window and
use uniformly distributed coefficients that sum up to 1.

• The sum over all seasonal effects will be close to zero. 
Usually, it is centered to be exactly there.

• This procedure is implemented in R with function: 
decompose()

12p 
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Smoothing, Filtering: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ and are explicitly known, can be visualised

+ procedure is transparent, and simple to implement

- resulting time series will be shorter than the original

- averaging leads to strong artificial dependencies

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s
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Smoothing, Filtering: STL-Decomposition
The Seasonal-Trend Decomposition Procedure by Loess

•    is an iterative, non-parametric smoothing algorithm
•    yields a simultaneous estimation of trend and seasonal effect
 similar to what was presented above, but more robust!

+ very simple to apply
+ very illustrative and quick
+ seasonal effect can be constant or smoothly varying
- model free, extrapolation and forecasting is difficult

 Good method for „having a quick look at the data“
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STL-Decomposition: Constant Season
stl(log(ts(airline,freq=12)),s.window=„periodic“)
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STL-Decomposition: Constant Season
stl(log(ts(airline,freq=12)),s.window=„periodic“)
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STL-Decomposition: Evolving Season
stl(log(ts(airline,freq=12)),s.window=15)
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STL-Decomposition: Evolving Season
stl(log(ts(airline,freq=12)),s.window=15)
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STL-Decomposition: Evolving Season
stl(log(ts(airline,freq=12)),s.window=7)
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STL-Decomposition: Evolving Season
stl(log(ts(airline,freq=12)),s.window=7)
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Parametric Modelling
When to use?

 Parametric modelling is often used if we have previous 
knowledge about the trend following a functional form.

 If the main goal of the analysis is forecasting, a trend in 
functional form may allow for easier extrapolation than a 
trend obtained via smoothing.

 It can also be useful if we have a specific model in mind 
and want to infer it. Caution: correlated errors!
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Parametric Modeling: Example
Mauna Loa Data: original series, containing trend and season
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Parametric Modeling for the Mauna Loa Data
Most often, time series are parametrically decomposed by using 
regression models. For the trend, polynomial functions are widely 
used, whereas the seasonal effect is modelled with dummy 
variables (= a factor).

where

Remark: choice of the polynomial degree is crucial!

2 3
0 1 2 3 ( )t i t tX t t t E            

 
 

1,2,..., 468

( ) 1,2,...,12

t

i t




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Parametric Modeling: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ and are explicitly known, can be visualised

+ even some inference on trend/season is possible

+  time series keeps the original length

- choice of a/the correct model is necessary/difficult

- residuals are correlated: this is a model violation!

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s


