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Overview

= Hierarchical Clustering: Agglomerative Clustering
= Partitioning Methods: K-Means and PAM
= (Gaussian Mixture Models



Goal of clustering

= Find groups, so that elements within cluster are very similar
and elements between cluster are very different
Problem: Need to interpret meaning of a group

= Examples:
- Find customer groups to adjust advertisement
- Find subtypes of diseases to fine-tune treatment

= Unsupervised technique: No class labels necessary

= N samples, k cluster: kN possible assignments
E.g. N=100, k=5: 5100 = 7*1069 1
Thus, impossible to search through all assignments



Clustering is useful in 3+ dimensions

Human eye is extremely
good at clustering

Use clustering only,

If you can not look at

the data

(i.e. more than 2 dimensions)




Hierarchical Clustering

= Agglomerative: Build up cluster from individual
observations

= Divisive: Start with whole group of observations and split
off clusters

= Divisive clustering has much larger computational burden
We will focus on agglomerative clustering

= Solve clustering for all possible numbers of cluster (1, 2,
..., N) at once
Choose desired number of cluster later



Agglomerative Clustering

Data in 2 dimensions Clustering tree = Dendrogramm

dissimila}rity

Lo

Join samples/cluster that are closest

until only one cluster is left




Agglomerative Clustering: Cutting the tree

Clustering tree = Dendrogramm

- 1 Cluster: abcde (trivial)
- 2 Cluster: ab - cde /

-4 Cluster:ab—-c—-d—-e %
-5Cluster:a—-b-c—-d-e / /

Get cluster solutions by cutting dissimila}rity
the tree:
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Dissimilarity between samples

= Any dissimilarity we have seen before can be used
- euclidean

- manhattan

- simple matching coefficent
- Jaccard dissimilarity

- Gower’s dissimilarity

- etc.



Dissimilarity between cluster

= Based on dissimilarity between samples

= Most common methods:
- single linkage
- complete linkage
- average linkage
= No right or wrong: All methods show one aspect of reality

= |f in doubt, | use complete linkage



Single linkage

= Distance between two cluster =
minimal distance of all element
pairs of both cluster

= Suitable for finding elongated
cluster



Complete linkage

= Distance between two cluster =
maximal distance of all element
pairs of both cluster

= Suitable for finding compact but
not well separated cluster
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Average linkage

= Distance between two cluster =
average distance of all element
pairs of both cluster

= Suitable for finding well separated,
potato-shaped cluster

11



Choosing the number of cluster

dat[ 2]

No strict rule
= Find the largest vertical “drop” in the tree

Cluster Dendrogram
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Quality of clustering: Silhouette plot

= One value S(i) in [0,1] for each observation

= Compute for each observation i:
a(i) = average dissimilarity between i and all other points of
the cluster to which i belongs
b(i) = average dissimilarity between i and its “neighbor”
cluster, i.e., the nearest one to which it does not belong.

. _ (b(D)=-a(i)
Then, S() = — = o0

= S(i) large: well clustered; S(i) small: badly clustered
S(1) negative: assigned to wrong cluster
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dat[,2]

Height
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houette plot: Example
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Agglomerative Clustering in R

= Pottery Example

= Functions “hclust”, “cutree” in package “stats”
= Alternative: Function “agnes” in package “cluster”
= Function “silhouette” in package “cluster”
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Partitioning Methods: K-Means

= Number of clusters K is fixed in advance

= Find K cluster centers u; and assignments, so that
within-groups Sum of Squares (WGSS) is minimal

— 2
= WGSS = Zall Cluster C ZPoint I in Cluster C(xi o :ui)

WGSS small WGSS large
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K-Means

= Exact solution computationally infeasible
= Approximate solutions, e.g. Lloyd’s algorithm

= Different starting assignments will give
different solutions
Random restarts to avoid local optima
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K-Means: Number of clusters

Run k-Means for several number of groups

Plot WGSS vs. number of groups

Choose number of groups after the last big drop of

Within groups sum of squares
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Robust alternative: PAM

= Partinioning around Medoids (PAM)

= K-Means: Cluster center can be an arbitrary point in space
PAM: Cluster center must be an observation (“medoid”)

= Advantages over K-means:
- more robust against outliers
- can deal with any dissimilarity measure
- easy to find representative objects per cluster
(e.g. for easy interpretation)
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Partitioning Methods in R

= Function “kmeans” in package “stats”
= Function “pam” in package “cluster”

= Pottery revisited
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Gaussian Mixture Models (GMM)

= Up to now: Heuristics using distances to find cluster
= Now: Assume underlying statistical model
= Gaussian Mixture Model:

fOp.0) = Xj1p;9,(x: 6)

K populations with different probability distributions
= Example: X; ~ N(0,1), X, ~N(2,1); p; = 0.2, p, =

F(2:p,6) = 0.2+ = exp(—22/2) + 0.8 - = exp(—(w — 2/2)

= Find number of classes and parameters p; and 6; given
data

= Assign observation x to cluster j, where estimated value of

p;gi(x;6;)

f(x;p,0)

P(cluster j|x) =

IS largest
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Revision: Multivariate Normal Distribution
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GMM: Example estimated manually

3 clusters

p,=0.7,p,=0.2,p;=0.1

Mean vector and cov. Matrix per cluster

dat[ 2]
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Fitting GMMs 1/2

= Maximum Likelihood Method O O QO
Hard optimization problem

= Simplification: Restrict Covariance matri¢es to gertain

> U

patterns (e.g. diagonal) |[» o] |© Q
N /
Dthrihuti{ﬁl\\"‘v’{:]u]/h{*

identifier Model HC | EM H]‘ﬂpi: / (Crientation
E . e | (univariate) | “equAl

v e | e | (univariate) | varidble

EII Al . . Spherical equal

VII Apd . . Spherical | variable

EEI AA . Diagonal equal

VEI ApA . Diagonal | variable

EVI AA . Diagonal equal  wvariable

VVI ApAy . Diagonal | variable wvariable

EEE AaDADY . . Ellipsoidal | equal equal

EEV AD ADE e | Ellipsoidal | equal equal

VEV Me DR ADY . Ellipsoidal | variable equal ariable
Vv Ap D Ay D‘f . . Ellipsoidal | variable wvariable ariable
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Fitting GMMs 2/2

= Problem: Fit will never get worse if you use more cluster or
allow more complex covariance matrices
— How to choose optimal model ?

= Solution: Trade-off between model fit and model complexity
BIC = log-likelihood — log(n)/2*(number of parameters)

Find solution with maximal BIC
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GMMs In R

= Function “Mclust” in package “mclust”

= Pottery revisited
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Giving meaning to clusters

= Generally hard in many dimensions

= Look at position of cluster centers or cluster
representatives (esp. easy in PAM)
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Runtime in seconds

(Very) small runtime study

Uniformly distributed points in [0,1]° on my desktop
1 Mio samples with k-means: 5 sec

(always just one replicate; just to give you a rough idea...)
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Comparing methods

= Partitioning Methods:
+ Super fast (“millions of samples”)
- No underlying Model

= Agglomerative Methods:
+ Get solutions for all possible numbers of cluster at once
- slow (“thousands of samples”)

= GMMs:
+ Get statistical model for data generating process

+ Statistically justified selection of number of clusters
- very slow (“hundreds of samples”)
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Concepts to know

Agglomerative clustering, dendrogram, cutting a
dendrogram, dissimilarity measures between cluster

Partitioning methods: k-Means, PAM
GMM

Choosing number of clusters:
- drop in dendrogram

- drop In WGSS

- BIC

Quality of clustering: Silhouette plot

30



R functions to know

= Functions “kmeans”, “hclust”, “cutree” in package “stats”

LN 11 PN 11

= Functions “pam”, “agnes”, “shilouette” in package “cluster”
= Function “Mclust” in package “mclust”
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