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Overview

= Multivariate t-test (one sample, two samples)
= MANOVA

= Multivariate Linear Regression



Revision: One-sample z-Test

1. Model: X4, ..., X, ~ N(u, o) iid, oy known
2. Hypotheses: Hy: i = o, Hp: i # Ug
3. Test statistics:

S Xn_,UJO S Xn_,UJO
T = o \/"’_LT
n

If Hy is true: X, ~ N(uo, ‘%) and thus T ~ N(0,1)
4. Make observation of test statistics: t

5. Compute p-value: Probability of seeing something as
extreme as t or even more extreme thant if H, Is true:
P(T] > l¢el)



Revision: One-sample t-Test

1. Model: X3, ..., X, ~ N(u, o) iid, oy unknown
2. Hypotheses: Hy: i = o, Hp: i # Ug
3. Test statistics:

T — Xn—Ho _ \/ﬁXn—uo
O+ ox
n

If Hy is true: X, ~ N(uo, ‘%) andthus T ~ t,,_
4. Make observation of test statistics: t

5. Compute p-value: Probability of seeing something as
extreme as t or even more extreme thant if H, Is true:
P(IT| > |¢l)



Hotelling’s one-sample T-Test: £ known

1. Model: X, ..., X,, ~ N(u, %) iid, X known; p dimensions
2. Hypotheses: Hy: i = ug, Hp: i # Uy
3. Test statistics:

Squared Mahalanobis Distance
of mean

T =n[Xpn — o) X (X — o)

If Hy is true: T ~ x;
4. Make observation of test statistics: t

5. Compute p-value: Probability of seeing something as
extreme as t or even more extreme than t if H, Is true:
P(T] > lel)



Hotelling’s one-sample T-Test: £ unknown

1. Model: X, ...,X,, ~ N(u, X) iid, £ unknown; p dimensions
2. Hypotheses: Hy: i = ug, Hp: i # Uy
3. Test statistics:

Estimated Sg. Mahalanobis Distance
of mean

T =Xy — po)" ' S™HX0 — po)

|f HO iS truel ~ Fp,n—p
4. Make observation of test statistics: t

5. Compute p-value: Probability of seeing something as
extreme as t or even more extreme than t if H, Is true:
P(T] > lel)

R: Function “HotellingsT2"” in package “ICSNP”



F distribution
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Example: Change in Pulmonary Response after Exposure
to Cotton Dust

Same 12 worker:
measure lung capacity
again

(3 dimensions)

12 worker:
measure lung capacity 6 hours cotton dust
(3 dimensions)

Paired test: Take difference
for each worker and each variable



Revision: Two-sample t-Test

1.

Model: Xy, ..., X, ~ N(uy, 0x?) iid, ax unknown

Yy, oo, Y ~ N(uy, 0x?) iid
HypOtheseS HO::uX = Uy, HA:qu == Uy

Test statistics:
T — (Yn_?n)_(/iX_/JY)

TXn-Yn

If Hyistrue: T ~ t,;1m—>
Make observation of test statistics: t

Can be extended to

Uxio'y

Compute p-value: Probability of seeing something as
extreme as t or even more extreme than t if H, Is true:

P(IT| > |tl)




Hotelling’s Two-Sample T-Test: ¥ unkown, but equal In
both groups

1.

2.
3.

Model: X4, ..., X;; ~ MV N (uy, 2) iid, £ unknown, p dims.
Yy, ..., Yo ~ MVN (uy, %) iid

HypOtheSGS HO:.L‘X = Uy, HA:MX == Uy
Test statistics:

_ (ntmep-lnm v T \Tq (¥ _V
T = mm p (X = Y) S X — V)

If Hy istrue: T ~F, p41m—p—-1
Make observation of test statistics: t

Compute p-value: Probability of seeing something as
extreme as t or even more extreme than t if H, Is true:
P(T] > lel)

R: Function “HotellingsT2" in package “ICSNP”



Example: Quality control for screws

20 screws: 15 screws:
- winding [mm] - winding
- length [mm] - length

- diameter [mm] - diameter
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Revision: One-way ANOVA

= Are the expected values in three groups the same?

Common
expected

° ° ® value
plausible ?

= ANOVA:
- Compare variation within groups and between groups
- Assume normality

= pP-Values can be computed
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MANOVA

= Are the multi-dimensional expected values in three groups
the same?

N

Common
.')‘, % . % expected
® .. ° o ® value
plausible ?
G=1 G=2 G=3
= MANOVA:

- Compare within groups and between groups covariance
matrices (test statistics based on eigenvalues)

- Assume normality

Wilks test: p-Values can be computed

= R: Function “manova” and “summary(..., test = “Wilks”)”

12



Revision: Univariate (Multiple) Linear Regression

= N samples, p predictors, 1 response
= Univariate Linear Regression model:

Y =080+, X8 te=f(X)+e

For N samples using matrix notation:
Y=XB+E

where

Y: N*1 matrix, X: N*(p+1), 8: (p+1)*1, E: N*1

= Criterion to optimize: RSS(8) = >0, (yi — f(x:))?

Solution: = (XTXx)1XxTy
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Multivariate (Multiple) Linear Regression

= N samples, p predictors, K responses
= Univariate Linear Regression model:

Vi = Bor + D5y XiBjk +ex = fu(X) + e

Cov(e) = X, errors between responses can be correlated
For N samples using matrix notation:
Y=XB+FE
where
Y: N*K matrix, X: N*(p+1), B: (p+1)*K, E: N*K

= Criterion to optimize: RSS(B; %) = SN (i — f(2:)) TS (ys — f(2))

= Solution: B=(x7X)"'xTy
= Surprising result: Estimates and even confidence intervals
are the same if doing K univariate multiple regressions!
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Is MANOVA and Multivariate Linear Regression useful?

= Multivariate Regression, MANOVA not well supported in
statistical software (including R)

= Useful, if you want to test if a predictor has an influence on
any response

= Possible in theory, but not well supported:
- simultaneous confidence intervals for several parameters
- Tests among parameters of different responses

= R: Function “Im” with matrix as y and “summary(..., test =
“WiIkS”)”
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Concepts to know

= Hotelling's T-test
= |dea of MANOVA and Multivariate Regression
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R functions to know

= “HotellingsT2”
= “Manova’
= “Im” with y being a matrix
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