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Overview 

 Cov, Cor, Mahalanobis, MV normal distribution 

 Visualization: Stars plot, mosaic plot with shading 

 Outlier: chisq.plot 

 Missing values: md.pattern, mice 

 MDS: Metric / non-metric 

 Dissimilarities: daisy 

 PCA 

 LDA 



Two variables: Covariance and Correlation 

 Covariance: 

 

 Correlation: 

 

 Sample covariance: 

 

 Sample correlation: 

   

 Correlation is invariant to changes in units,  

covariance is not 

(e.g. kilo/gram, meter/kilometer, etc.)  
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Cov(X;Y ) = E[(X¡E[X])(Y ¡E[Y ])] 2 [¡1;1]

Corr(X;Y ) =
Cov(X;Y )

¾X¾Y
2 [¡1; 1]

dCov(x; y) = 1
n¡1
Pn

i=1(xi ¡ x)(yi ¡ y)

rxy = dCor(x; y) =
cCov(x;y)
¾̂x¾̂y



Scatterplot: Correlation is scale invariant 
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Intuition and pitfalls for correlation 

Correlation = LINEAR relation 
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Covariance matrix / correlation matrix: 

Table of pairwise values 

 True covariance matrix: 

 True correlation matrix:  

 

 Sample covariance matrix: 

Diagonal: Variances 

 Sample correlation matrix: 

Diagonal: 1 

 

 R: Functions “cov”,   “cor” in package “stats” 
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§ij = Cov(Xi;Xj)

Cij = Cor(Xi;Xj)

Sij = dCov(xi; xj)

Rij = dCor(xi; xj)



Multivariate Normal Distribution: 

Most common model choice 

6 

f(x;¹;§) = 1p
2¼j§j

exp
¡
¡ 1

2
¢ (x¡ ¹)T§¡1(x¡ ¹)

¢

Sq. Mahalanobis Distance MD2(x)  

= 

Sq. distance from mean in  

standard deviations  

IN DIRECTION OF X 



Mahalanobis distance: Example 

7 

§ =

µ
25 0

0 1

¶

¹ =

µ
0

0

¶
;

(0,10) 

MD = 10 



Mahalanobis distance: Example 
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MD = 7.3 



Glyphplots: 

Stars 
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• Which cities are special? 

• Which cities are like 

New Orleans? 

• Seattle and Miami are quite 

far apart; how do they  

compare? 

 

• R: Function “stars” in package  

“stats” 



Mosaic plot with shading 
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p-value of  

independence  

test: Highly 

significant 

Suprisingly small 

observed cell 

count 

Suprisingly large 

observed cell 

count 

R: Function “mosaic” in package “vcd” 



Outliers: Theory of Mahalanobis Distance 

Assume data is multivariate normally distributed  

(d dimensions) 

11 

Squared Mahalanobis distance of samples follows a Chi-Square distribution 

with d degrees of freedom 

Expected value: d 

(“By definition”: Sum of d standard normal random variables has  

Chi-Square distribution with d degrees of freedom.) 



Outliers: Check for multivariate outlier 

 Are there samples with estimated Mahalanobis distance 

that don’t fit at all to a Chi-Square distribution? 

 Check with a QQ-Plot 

 Technical details: 

- Chi-Square distribution is still reasonably good for 

estimated Mahalanobis distance 

- use robust estimates for 

 

 R: Function «chisq.plot» in package «mvoutlier» 
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¹;§



Outliers: chisq.plot 
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Outlier easily detected ! 



Missing values: Problem of Single Imputation 

 Too optimistic: Imputation model (e.g. in Y = a + bX) is  

just estimated, but not the true model 

 Thus, imputed values have some uncertainty 

 Single Imputation ignores this uncertainty 

 Coverage probability of confidence intervals is wrong 

 

 Solution: Multiple Imputation 

Incorporates both  

- residual error 

- model uncertainty (excluding model mis-specification) 

 

 R: Package «mice» for Multiple Imputation using chained 

equations 
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? 

Multiple Imputation: MICE 
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? 

Impute several times 

Do standard analysis 

for each imputed data set; 

get estimate and std.error 

Aggregate 

results 



Idea of MDS 

 Represent high-dimensional point cloud in few (usually 2) 

dimensions keeping distances between points similar 

 Classical/Metric MDS: Use a clever projection 

- guaranteed to find optimal solution only for euclidean 

distance 

- fast 

R: Function “cmdscale” in base distribution 

 Non-metric MDS:  

- Squeeze data on table = minimize STRESS 

- only conserve ranks = allow monotonic transformations 

 before reducing dimensions 

- slow(er) 

R: Function “isoMDS” in package “MASS” 
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Distance: To scale or not to scale… 

 If variables are not scaled 

- variable with largest range has most weight 

- distance depends on scale  

 Scaling gives every variable equal weight 

 Similar alternative is re-weighing: 

 

 Scale if,  

- variables measure different units (kg, meter, sec,…) 

- you explicitly want to have equal weight for each variable 

 Don’t scale if units are the same for all variables 

 Most often: Better to scale. 
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d(i; j) =
p

w1(xi1¡xj1)2+w2(xi2¡xj2)2+ :::+wp(xip¡xjp)2



Dissimilarity for mixed data: Gower’s Dissim. 

 Idea: Use distance measure between 0 and 1 for each 

variable:  

 Aggregate: 

 

 Binary (a/s), nominal: Use methods  discussed before 

- asymmetric: one group is much larger than the other 

 Interval-scaled: 

xif: Value for object i in variable f 

Rf: Range of variable f for all objects 

 Ordinal: Use normalized ranks; then like interval-scaled 

based on range 

 

 R: Function “daisy” in package “cluster” 
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d(i; j) = 1
p

Pp

i=1 d
(f)

ij

d
(f)

ij

d
(f)

ij =
jxif¡xjf j

Rf



PCA: Goals 

 Goal 1: Dimension reduction to a few dimensions while 

explaining most of the variance 

(use first few PC’s) 

 Goal 2: Find one-dimensional index that separates objects 

best 

(use first PC) 
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PCA (Version 1): Orthogonal directions 
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PC 1 

PC 2 

PC 3 

• PC 1 is direction of largest variance 

• PC 2 is  

- perpendicular to PC 1 

- again largest variance 

• PC 3 is  

- perpendicular to PC 1, PC 2 

- again largest variance 

• etc. 



How many PC’s: Blood Example 
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Rule 1: 5 PC’s 

Rule 2: 3 PC’s 

Rule 3: Ellbow after PC 1 (?)  



Biplot: Show info on samples AND variables 
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Approximately true: 

• Data points: Projection on first two PCs 

Distance in Biplot ~ True Distance 

• Projection of sample onto arrow gives  

original (scaled) value of that variable 

• Arrowlength: Variance of variable 

• Angle between Arrows: Correlation 

 

Approximation is often crude;  

good for quick overview 

 



Supervised Learning: LDA 
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P(CjX) =
P(C)P(XjC)

P(X)
» P(C)P(XjC)

Bayes rule: 

 Choose class where P(C|X) is maximal 

(rule is “optimal” if all types of error are equally costly) 

 

Special case: Two classes (0/1) 

- choose c=1 if P(C=1|X) > 0.5 or 

- choose c=1 if posterior odds P(C=1|X)/P(C=0|X) > 1 

Prior / prevalence: 

Fraction of samples  

in that class 

Assume: 

XjC » N(¹c;§)

Find some estimate 

In Practice: Estimate 𝑃 𝐶 , 𝜇𝐶 , Σ  



LDA 
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0 

1 

Classify to which class? – Consider: 

• Prior 

• Mahalanobis distance to class center 

1. Principal Component 

1. Linear Discriminant  

  = 

1. Canonical Variable 

Linear decision boundary 

Orthogonal directions of best separation 

Balance prior and mahalanobis distance 



LDA: Quality of classification 

 Use training data also as test data: Overfitting 

Too optimistic for error on new data 

 Separate test data 

 

 

 

 

 Cross validation (CV; e.g. “leave-one-out cross validation): 

Every row is the test case once, the rest in the training data 
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Training 

Test 


