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Overview

= Cov, Cor, Mahalanobis, MV normal distribution

= Visualization: Stars plot, mosaic plot with shading
= Qutlier: chisqg.plot

= Missing values: md.pattern, mice

= MDS: Metric / non-metric

= Dissimilarities: daisy

= PCA

= LDA



Two variables: Covariance and Correlation

= Covariance: Cov(X,Y)=E[(X —-E[X])(Y —E[Y])] € [~o0;q)

= Correlation:  Corr(X,Y) = 22XY) 1.1

OXO0Yy

= Sample covariance: Cov(z,y) = == (z; — Z)(yi — 7)

n—1

= Sample correlation: r,, = Cor(z,y) = <o)

520y

= Correlation Is invariant to changes in units,
covariance is not
(e.g. kilo/gram, meter/kilometer, etc.)



Scatterplot: Correlation is scale invariant

Timeinh

1.2

1.0

0.8

08

0.4

Cor=0.99-Cov="1.36

Dist in km

20

Time in min

80

70

60

50

40

30

20

Cor=0.99 - Cov = 81348.37

I I
10000 15000

Distin m

20000



Jolp

d pitfalls for correlat

Correlation = LINEAR relation

Ition an

Intu

0.8

/"‘.‘ '

o —




Covariance maitrix / correlation matrix:
Table of pairwise values
= True covariance matrix. 3;; = Cov(X;, X;)

= True correlation matrix: C;; = Cor(X;, X;)

= Sample covariance matrix: S;; = Cov(z;, z;)
Diagonal: Variances

= Sample correlation matrix: R;; = Cor(xz;,z;)
Diagonal: 1

= R: Functions “cov”’, “cor’in package “stats”



Multivariate Normal Distribution:
Most common model choice
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Mahalanobis distance: Example "
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Mahalanobis distance: Example )= 8
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Glyphplots:
Stars

Which cities are special?

Which cities are like
New Orleans?

Seattle and Miami are quite

far apart; how do they
compare?

R: Function “stars” in package

“stats”
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Mosaic plot with shading

Suprisingly small
observed cell
count

R: Function “mosaic” in package “vcd”
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test: Highly
significant

Suprisingly large
observed cell
count
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QOutliers: Theory of Mahalanobis Distance

Assume data is multivariate normally distributed
(d dimensions)

4

Squared Mahalanobis distance of samples follows a Chi-Square distribution
with d degrees of freedom

Expected value: d

(“By definition”: Sum of d standard normal random variables has
Chi-Square distribution with d degrees of freedom.)
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Outliers: Check for multivariate outlier

= Are there samples with estimated Mahalanobis distance
that don't fit at all to a Chi-Square distribution?

= Check with a QQ-Plot

= Technical details:

- Chi-Square distribution is still reasonably good for
estimated Mahalanobis distance
- use robust estimates for i, 22

= R: Function «chisg.plot» in package «mvoutlier»
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Outliers: chisqg.plot

QOutlier easily detected !
Chi*2-Plot
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Missing values: Problem of Single Imputation

= Too optimistic: Imputation model (e.g. In Y =a + bX) is
just estimated, but not the true model

= Thus, imputed values have some uncertainty

= Single Imputation ignores this uncertainty

= Coverage probability of confidence intervals is wrong

= Solution: Multiple Imputation
Incorporates both
- residual error
- model uncertainty (excluding model mis-specification)

= R: Package «mice» for Multiple Imputation using chained
equations
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Multiple Imputation: MICE

Aggregate
results

Do standard analysis
|mpute several times for each imputed data set;
get estimate and std.error
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ldea of MDS

Represent high-dimensional point cloud in few (usually 2)
dimensions keeping distances between points similar

Classical/Metric MDS: Use a clever projection

- guaranteed to find optimal solution only for euclidean
distance

- fast

R: Function “cmdscale” in base distribution

Non-metric MDS:

- Squeeze data on table = minimize STRESS

- only conserve ranks = allow monotonic transformations
before reducing dimensions

- slow(er)

R: Function “isoMDS” in package “MASS”
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Distance: To scale or not to scale...

= |f variables are not scaled
- variable with largest range has most weight
- distance depends on scale

= Scaling gives every variable equal weight
= Similar alternative is re-weighing:

d(i, ) = \Jwi (i1 — 251)? + walwiz — j2)? + ... +wp(Tip — x5p)?
= Scale If,

- variables measure different units (kg, meter, sec,...)
- you explicitly want to have equal weight for each variable

= Don’t scale if units are the same for all variables
= Most often: Better to scale.
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Dissimilarity for mixed data: Gower’s Dissim.

= |dea: Use distance measure between 0 and 1 for each
variable: d./’
= Aggregate: d(i,j) = 13"  dl

1=1 "1y

= Binary (a/s), nominal: Use methods discussed before
- asymmetric: one group is much larger than the other

= Interval-scaled: d;]’ = =
X;: Value for object I in variable f
R;: Range of variable f for all objects

= QOrdinal: Use normalized ranks: then like interval-scaled
based on range

= R: Function “daisy” in package “cluster”
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PCA: Goals

= Goal 1: Dimension reduction to a few dimensions while
explaining most of the variance
(use first few PC’s)

= Goal 2: Find one-dimensional index that separates objects
best
(use first PC)

Arnnl MNMiilfn/arvrinta Ctatictire CnhnrinA O2N19
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PCA (Version 1): Orthogonal directions

* PC 1is direction of largest variance

* PC2is
- perpendicular to PC 1
- again largest variance

* PC3is
- perpendicular to PC 1, PC 2 -5
- again largest variance

° etc.
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How many PC’s: Blood Example

Importance of Components :

Rule 1: 5 PC’s

Comp.1 Comp. 2 Comp. 3 comp. 4 omp . 5 comp. 6
Standard deviation 1.6710100 1.2375848 1.1177138 0.88227419 0.78§B9505 0.69917350
Proportion of variance 0.3490343 0.1914520 0.1561605 0.09730097 (e oes8d 0.06110545
Cumulative Proportion 0.3490343 0.5404863 0.6966468 D.?9394FF.932F4908
Comp. 7 Comp. §
standard deviation 0.66002394 0.31996216
Froportion of variance 0.05445395 0.01279697
Cumulative Proportion 0.98720303 1.00000000

Rule 3: Ellbow after PC 1 (?)

Yariances

2.0
|

blood_pcacor

Rule 2: 3 PC’s

1.0

0.0
|

Comp1 Comp2 Comp3 Compd4 Comp5 Compt Comp/ Comp.d
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Biplot: Show info on samples AND variables

Approximately true:

* Data points: Projection on first two PCs
Distance in Biplot ~ True Distance

* Projection of sample onto arrow gives
original (scaled) value of that variable

* Arrowlength: Variance of variable

* Angle between Arrows: Correlation

Approximation is often crude;
good for quick overview
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Supervised Learning: LDA

P(C)|X) = Z2XIC) P(X]|C)

AN

, _ Prior / prevalence:
Find some estimate Assume:

Fraction of samples X|C’ ~ N(,UJm E)

in that class

Bayes rule:

Choose class where P(C|X) is maximal
(rule is “optimal” if all types of error are equally costly)

Special case: Two classes (0/1)
- choose c=1 if P(C=1|X) > 0.5 or
- choose c=1 if posterior odds P(C=1|X)/P(C=0|X) > 1

In Practice: Estimate P(C), uc, 2
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LDA

Orthogonal directions of best separation

1. Principal Component
Linear decision boundary A

® 1. Linear Discriminant
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Classify to which class? — Consider:

°* Prior

5) .
*  Mahalanobis distance to class center
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LDA: Quality of classification

= Use training data also as test data: Overfitting
Too optimistic for error on new data

= Separate test data

= I -

Training -

= Cross validation (CV; e.g. “leave-one-out cross validation):
Every row Is the test case once, the rest in the training data
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