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Overview 

 Logistic Regression 

 Bayes rule for general loss functions 



Generalized Linear Models 

 Stochastic part 

 

 

 Deterministic part 
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X » F(µ)

g(µ) = ´(x) = ¯0+¯1x1 +¯2x2+ :::+¯pxp

Linear predictor Link function 



Examples 

 Linear Regression 

 

 

 

 

 

 Logistic Regression 

 

 

 
Link function: logit 

Example: Survival and dose of poison 
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Y »N(¹;¾2)

¹= ¯0+¯1x1

Link function: Identity function  

Example: Distance and Travel time in tram 

Y »Bernoulli(p)

log
³

p

1¡p

´
= ¯0 + ¯1x1



Logistic regression for supervised learning 

 Logistic regression computes posterior probability of class 

membership 

 Can be used in the same way as LDA 
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Logistic regression and LDA are almost the same thing 

 LDA:  Assuming same normal density in each group 

 

 

 

 

 

 Logistic regression by assumption: 
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Difference between LDA and Logistic Regression 

 Parameter estimate LDA:  

Maximize joint likelihood 

 

 

 

 Parameter estimate Logistic Regression: 

Maximize conditional likelihood 

 

 

 

 Logistic Regression is thus based on less assumptions, 

i.e., more flexible 
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Q
i f(xi; yi) =

Q
i f(xijyi)

Q
i f(yi)

Q
i f(xi; yi) =

Q
i f(yijxi)

Q
i f(xi)

Gaussian Bernoulli 

logistic ignored 



LDA    vs.   Logistic Regression 

+ very comfortable 

implementation (CV, LD’s) 

+ easy to apply to several 

groups 

- needs more assumptions 
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- less comfortable 
implementation (CV harder, no 
LD’s) 

-  Possible but harder to use 
for several groups 
+ needs less assumptions 

Personal suggestion: 
- LDA for several groups, low-dim representation,  
 quick solutions 
- Logistic Regression for two groups, applications where  
 performance is crucial 

 



Example: Spam Filter 

 R: Function “glm” with option “family = binomial” 
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Loss functions 

 Loss function: L(k,l) 

 Common choice: 0-1 loss 

 

 

 

 

 

 Other choices possible 
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True class 

Estimated class 

T = 0 T = 1 T = 2 

E = 0 0 1 1 

E = 1 1 0 1 

E = 2 1 1 0 

T = 0 T = 1 T = 2 

E = 0 0 10 3 

E = 1 9 0 27 

E = 2 4 5 0 



Mathematical background 

 Classifier 𝑐 𝑋 : 𝑋 → {1,… , 𝑘} 

 C: true class 

 Probability of miss-classification: 

𝑝𝑚𝑐 𝑘 = 𝑃(𝑐 𝑋 ≠ 𝑘|𝐶 = 𝑘) 

 Risk function R for classifier c: 

𝑅 𝑐, 𝑘 = 𝐸𝑋 𝐿 𝑘, 𝑐 𝑋 𝐶 = 𝑘 = 

       =  𝐿 𝑘, 𝑙 𝑃(𝑐 𝑋 = 𝑙|𝐶 = 𝑘𝐾
𝑙=1 ) 

Assuming 0-1-loss: 𝑅 𝑐, 𝑘 = 𝑝𝑚𝑐(𝑘) 

 Total risk for classifier c: 

𝑅 𝑐 = 𝐸𝐶 𝑅 𝑐, 𝐶 =  𝜋𝑘𝑅(𝑐, 𝑘)

𝐾

𝑘=1

 

Assuming 0-1-loss: 𝑅 𝑐 =  𝜋𝑘 𝑝𝑚𝑐(𝑘)
𝐾
𝑘=1  
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Overall  

missclassification 

error 



Bayes rule for classification 

 Classification rule that minimizes total risk under 0-1-loss is 

 

 

 

 

 Classification rule that minimizes total risk under  

general loss function is 
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c(X) = argmaxl·kP(C = ljX = x)

c(X) = argminl·K
PK

j=1L(j; l)P(C = jjX = x)



Bayes rule is a benchmark 

 No method can beat the Bayes rule, even given an infinite 

amount of data; i.e., sometimes, perfect classification is not 

possible 

Intuition: 

 

 

 

 

 

 

 Our job in practice: Find best possible estimate for 

posterior probability 
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Assume equal prior: Classify to group with larger density 

Classify to blue group, 

might still be red group 



Example: Detecting HIV 

Assuming 0-1-loss 

 Suppose LDA or Logistic regression yield for a patient 

P(HIV = 0|X=x) = 0.9, thus P(HIV = 1|X=x) = 0.1 

 Assuming 0-1-loss 

 

 

 

 

 Bayes rule: Choose class HIV=0 if P(HIV=0|X=x) > 0.5 

 

 Thus in example, choose HIV=0, i.e. “patient has no HIV” 

Total risk based on 0-1-loss will be optimal 
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T=HIV T=No HIV 

E=HIV 0 1 

E=No HIV 1 0 



Example: Detecting HIV 

Assuming more realistic loss function 

 Suppose LDA or Logistic regression yield for a patient 

P(HIV = 0|X=x) = 0.9, thus P(HIV = 1|X=x) = 0.1 

 Assuming 

 

 

 

 

 Bayes rule: Choose class HIV=0 if 

 𝐿 𝑗, 0 𝑃(𝐻𝐼𝑉 = 𝑗

1

𝑗=0

𝑋 = 𝑥 < 𝐿 𝑗, 1 𝑃(𝐻𝐼𝑉 = 𝑗

1

𝑗=0

𝑋 = 𝑥  
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T=HIV T=No HIV 

E=HIV 0 1 

E=No HIV 100 0 



Example: Continued 

𝐿 0,0 𝑃 0 𝑥 + 𝐿 1,0 𝑃 1 𝑥 < 𝐿 0,1 𝑃 0 𝑥 + 𝐿 1,1 𝑃 1 𝑥  
0 ∗ 𝑃 0 𝑥 + 100 ∗ 𝑃 1 𝑥 < 1 ∗ 𝑃 0 𝑥 + 0 ∗ 𝑃 1 𝑥  
100 ∗ 𝑃 1 𝑥 < 𝑃 0 𝑥  

 Using 𝑃 1 𝑥 = 1 − 𝑃 0 𝑥  we get: 

100 − 100 ∗ 𝑃 0 𝑥 < 𝑃 0 𝑥  

𝑃 0 𝑥 >
100

101
= 0.99 

 Bayes rule: Choose class HIV=0 if P(HIV=0|X=x) > 0.99 

I.e., only declare “no HIV” if you are really, really sure! 

 

 Thus in example choose HIV=1, i.e., “patient has HIV” 

Total risk based on given loss function is optimized 
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T=HIV T=No HIV 

E=HIV 0 1 

E=No HIV 100 0 truth estimate 



Concepts to know 

 Logistic regression 

 LDA vs. Logistic regression 

 Bayes rule 

- as a benchmark 

- as a optimal rule for general loss functions 
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R functions to know 

 Function “glm” with option family = “binomial” 
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