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Overview

= Logistic Regression
= Bayes rule for general loss functions



Generalized Linear Models

= Stochastic part
X ~ F(60)
= Deterministic part
9(0) — 77(5’3) — 50 + ﬁlwl + 52332 + ...+ 5pxp
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Link function Linear predictor




Examples

= Linear Regression
Y ~ N(u,0°)
p = Po + B111

Link function: Identity function
Example: Distance and Travel time in tram | | | | |

= Logistic Regression ~
Y ~ Bernoulli(p) : |
log, (125 ) = Bo + Bras .
Link function: logit o~
Example: Survival and dose of poison <




Logistic regression for supervised learning

= Logistic regression computes posterior probability of class
membership

= Can be used in the same way as LDA



Logistic regression and LDA are almost the same thing

= LDA: Assuming same normal density in each group
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= Logistic regression by assumption:

P(Y =1|X = z)
log (P(Y —0[X = 2)
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Difference between LDA and Logistic Regression

= Parameter estimate LDA:
Maximize joint likelihood

1L f(i, y:) :\Hi f(%'|y7:)}\H7; f(yz')}
[ |
Gaussian Bernoulli

= Parameter estimate Logistic Regression:
Maximize conditional likelihood

1L f(zi,9:) :\Hi f(yz'\%')ﬂl_[z- f(wi)}

|

logistic ignored

= Logistic Regression is thus based on less assumptions,
l.e., more flexible



LDA VS. Logistic Regression

+ very comfortable - less comfortable
implementation (CV, LD’s) implementation (CV harder, no
+ easy to apply to several LD’s)

- Possible but harder to use
for several groups
+ needs less assumptions

groups
- needs more assumptions

Personal suggestion:

- LDA for several groups, low-dim representation,
guick solutions

- Logistic Regression for two groups, applications where
performance is crucial



Example: Spam Filter

= R: Function “glm” with option “family = binomial”



True class

Loss functions / |
Estimated class

. Loss function: LKIF—
= Common choice: 0-1 loss -

E=0 O
E=1 1 0 1
E=2 1 1 0

= Other choices possible -

E=0 O

E=1 9 0 27

E=2 4 5 0



Mathematical background

= Classifier c(X):X - {1, ..., k}
= C:true class

= Probability of miss-classification:
pmc(k) = P(c(X) + k|C = k)
= Risk function R for classifier c:
R(c, k) = Ex|L(k,c(X))|Cc = k| =
=Y21 Lk, DP(c(X) = l|C = k)
Assuming 0-1-loss: R(c, k) = pmc(k)

= Total risk for classifier c: Overall
K missclassification

R(c) = E-|R(c,C)] = z . R(c, k) e

k=1
Assuming 0-1-loss: R(c) = Yx_, m pmc(k)
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Bayes rule for classification

= (Classification rule that minimizes total risk under 0-1-loss is

c(X) = argmazx;<, P(C =1|X = )

= Classification rule that minimizes total risk under
general loss function is

c(X) = argmin<x Zfil L(j,)P(C =j|X =x)
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Bayes rule is a benchmark

= No method can beat the Bayes rule, even given an infinite
amount of data; i.e., sometimes, perfect classification is not

possible
Intuition: Assume equal prior: Classify to group with larger density

=,
o

density
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" Classify to blue group,
might still be red group

= Our job in practice: Find best possible estimate for
posterior probability
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Example: Detecting HIV

Assuming 0-1-loss

= Suppose LDA or Logistic regression yield for a patient
P(HIV = 0|X=x) = 0.9, thus P(HIV = 1|X=x) = 0.1

= Assuming 0-1-loss

E=HIV 0 1

E=No HIV 1 0

= Bayes rule: Choose class HIV=0 if P(HIV=0|X=x) > 0.5

= Thus in example, choose HIV=0, i.e. “patient has no HIV”
Total risk based on 0-1-loss will be optimal
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Example: Detecting HIV
Assuming more realistic loss function

= Suppose LDA or Logistic regression yield for a patient
P(HIV = 0|X=x) = 0.9, thus P(HIV = 1|X=x) = 0.1
= Assuming

E=HIV 0 1

E=No HIV 100 0

= Bayes rule: Choose class HIV=0 if

1 1
z L(j,0)P(HIV = j |X = x) < 2 LG, 1)P(HIV = j |X = x)
=0 =0
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- T=HIV T=No HIV

Example: Continued E=HIV 0 1

truth stimate E=No HIV 100 0
LT0,09P(0]x) + L(1,0)P(1]|x) < L(0,1)P(0|x) + L(1,1)P(1|x)
0 *P(O|x) + 100+« P(1]x) <1+ P(0|x)+ 0= P(1|x)
100 « P(1]|x) < P(0]x)
= Using P(1|x) =1 — P(0|x) we get:
100 — 100 = P(0|x) < P(0|x)
@ = 0.99
P(0|x) > 701 = 0

= Bayes rule: Choose class HIV=0 if P(HIV=0|X=x) > 0.99
|.e., only declare “no HIV” if you are really, really sure!

= Thus in example choose HIV=1, i.e., “patient has HIV”"
Total risk based on given loss function is optimized
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Concepts to know

= Logistic regression
= LDA vs. Logistic regression

= Bayes rule
- as a benchmark
- as a optimal rule for general loss functions
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R functions to know

= Function “gilm” with option family = “binomial”
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