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Outline 

 Fundamental Idea 

 Classical Multidimensional Scaling 

 Non-metric Multidimensional Scaling 
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Basic Idea 
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How to represent in two dimensions? 



Idea 1: Projection 

4 Appl. Multivariate Statistics - Spring 2012 



Idea 2: Squeeze on table 
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Close points 
stay close 



Which idea is better? 
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Idea of MDS 

 Represent high-dimensional point cloud in few (usually 2) 

dimensions keeping distances between points similar 

 Classical/Metric MDS: Use a clever projection 

R: cmdscale 

 Non-metric MDS: Squeeze data on table 

R: isoMDS 
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Classical MDS 

 Problem: Given euclidean distances among points, recover 

the position of the points! 

 Example: Road distance between 21 European cities 

(almost euclidean, but not quite) 
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…
 



Classical MDS 

 First try: 
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Classical MDS 

 Flip axes: 
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Can identify points up to  

- shift 

- rotation 

- reflection 



Classical MDS 

 Another example: Airpollution in US cities 

 

 

 

 

 

 

 Range of manu and popul is much bigger than range of 

wind 

 Need to standardize to give every variable equal weight 
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Classical MDS 
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Classical MDS: Theory 

 Input: Euclidean distances between n objects in p 

dimensions 

 Output: Position of points up to rotation, reflection, shift 

 Two steps: 

- Compute inner products matrix B from distance 

- Compute positions from B 
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Classical MDS: Theory – Step 1 

 Inner products matrix B = XXT 

 Connect to distance: 

 Center points to avoid shift invariance 

 Invert realtionship:  

“doubly centered” 
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d2ij = bii + bjj ¡ 2bij

bij =¡1
2
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Classical MDS: Theory – Step 2 

 Since B = XXT, we need the “square root” of B 

 B is a symmetric and positive definite n*n matrix 

 Thus, B can be diagonalized:  

D is a diagonal matrix with                           on diagonal 

(“eigenvalues”) 

V contains as columns  normalized eigenvectors 

 Some eigenvalues will be zero; drop them: 

 Take “square root”:  
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Classical MDS: Low-dim representation 

 Keep only few (e.g. 2) largest eigenvalues and 

corresponding eigenvectors 

 The resulting X will be the low-dimensional representation 

we were looking for 

 

 Goodness of fit (GOF) if we reduce to m dimensions:  

                                                      (should be at least 0.8) 

 

 Finds “optimal” low-dim representation: Minimizes 
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Classical MDS: Pros and Cons 

+ Optimal for euclidean input data 

+ Still optimal, if B has non-negative eigenvalues  

(pos. semidefinite) 

+ Very fast 

- No guarantees if B has negative eigenvalues 

 

However, in practice, it is still used then. New measures for 

Goodness of fit: 
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Used in R function “cmdscale” 



Non-metric MDS: Idea 

 Sometimes, there is no strict metric on original points 

 Example: How much do you like the portraits? 

(1: Not at all, 10: Very much) 
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2 6 9 

OR 1 5 10 ?? 



Non-metric MDS: Idea 

 Absolute values are not  

that meaningful 

 Ranking is important 

 Non-metric MDS finds a low-dimensional 

representation, which 

respects the ranking of distances 
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Non-metric MDS: Theory 

   is the true dissimilarity, dij is the distance of representation 

 Minimize STRESS (   is an increasing function): 

 

 

 Optimize over both position of points and µ 

                   is called “disparity” 

 Solved numerically (isotonic regression);  

Classical MDS as starting value; 

very time consuming 
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Non-metric MDS: Example for intuition (only) 
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True points in 

high dimensional space 

3 

2 

5 

B A 

C 

dAB < dBC < dAC 

STRESS = 19.7 

Compute best 

representation 



Non-metric MDS: Example for intuition (only) 
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True points in 

high dimensional space 

2.7 

2 

4.8 

B A 

C 

dAB < dBC < dAC 

STRESS = 20.1 

Compute best 

representation 



Non-metric MDS: Example for intuition (only) 
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True points in 

high dimensional space 

2.9 

2 

5.2 

B A 

C 

dAB < dBC < dAC 

STRESS = 18.9 

Stop if minimal STRESS is found. 

We will finally represent the distances 

dAB = 2, dBC = 2.9, dAC = 5.2 

Compute best 

representation 



Non-metric MDS: Pros and Cons 

+ Fulfills a clear objective without many assumptions 

 (minimize STRESS) 

+ Results don’t change with rescaling or monotonic variable  

 transformation 

+ Works even if you only have rank information 

 

- Slow in large problems 

- Usually only local (not global) optimum found 

- Only gets ranks of distances right 

 

24 Appl. Multivariate Statistics - Spring 2012 



Non-metric MDS: Example 

 Do people in the same party vote alike? 

 Agreement of 15 congressman in 19 votes 
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…
 



Non-metric MDS: Example 
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Concepts to know 

 Classical MDS:  

- Finds low-dim projection that respects distances 

- Optimal for euclidean distances 

- No clear guarantees for other distances 

- fast 

 Non-metric MDS: 

- Squeezes data points on table 

- respects only rankings of distances 

- (locally) solves clear objective 

- slow 
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R commands to know 

 cmdscale included in standard R distribution 

 isoMDS from package “MASS” 
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