Dealing with missing values – part 2

Applied Multivariate Statistics – Spring 2012

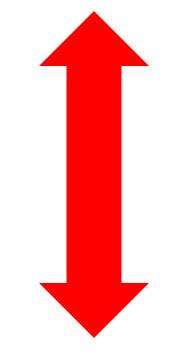
Overview

- More on Single Imputation: Shortcomings
- Multiple Imputation: Accounting for uncertainty

Single Imputation

- Unconditional Mean
- Unconditional Distribution
- Conditional Mean
- Conditional Distribution

Easy / Inaccurate



Hard / Accurate

Example: Blood Pressure -Revisited

- 30 participants in January (X) and February (Y)
- MCAR: Delete 23 Y values randomly
- MAR: Keep Y only where X > 140 (follow-up)
- MNAR: Record Y only where Y > 140 (test everybody again but only keep values of critical participants)

		Y					
X	Complete	MCAR	MAR	MNAR			
	Data for individual participants						
169	148	148	148	148			
126	123	140	140	140			
132	149	_		149			
160	169	_	169	169			
105	138	_		107			
116	102	_		_			
125	88	_		_			
112	100	_		_			
133	150	_		150			
94	113	_		_			
109	96	_		_			
109	78	_		_			
106	148	_		148			
176	137	_	137	_			
128	155	_		155			
131	131	_		_			
130	101	101		_			
145	155	_	155	155			
136	140	_		_			
146	134	_	134	_			
111	129	_		_			
97	85	85		—			
134	124	124		—			
153	112	—	112	—			
118	118	_	—	—			
137	122	122		—			
101	119		—	—			
103	106	106		—			
78	74	74		_			
151	113	_	113	—			

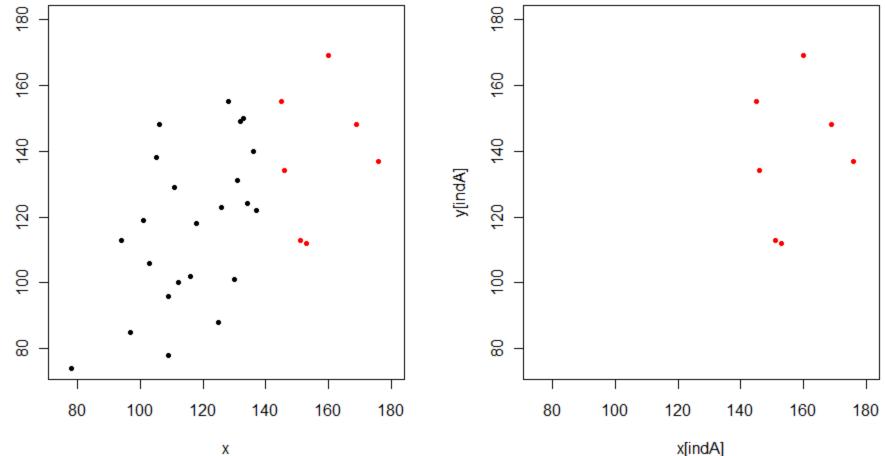
 \geq

Example: Blood Pressure

True values

Black points are missing (MAR)

MAR



Х

>

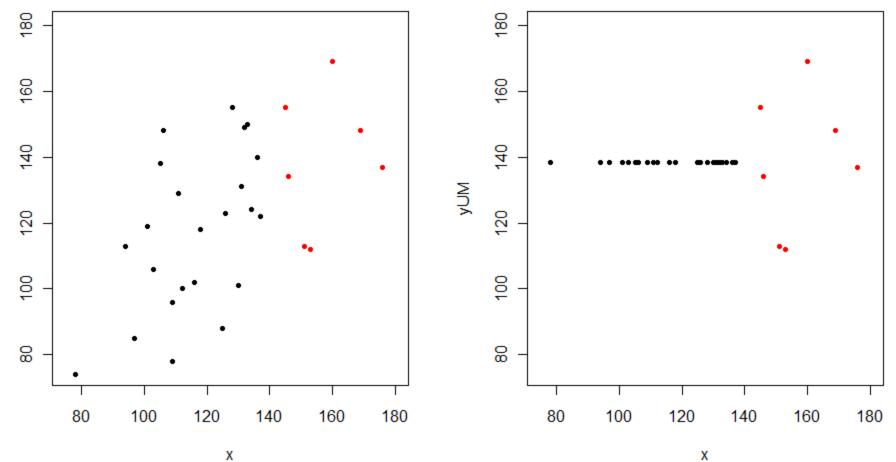
Unconditional Mean

True values

+ Mean of Y ok

- Variance of Y wrong

Unconditional Mean



Х

>

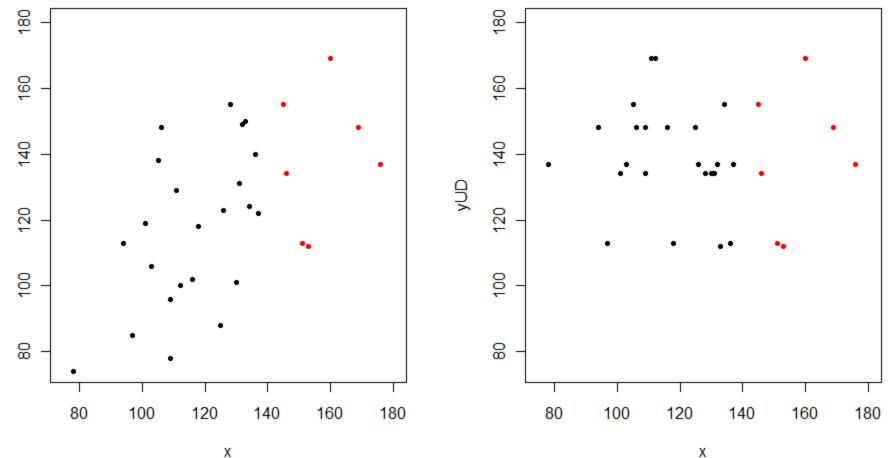
Unconditional Distribution

True values

+ Mean of Y ok, Variance better

- Correlation btw X and Y wrong

Unconditional Distribution



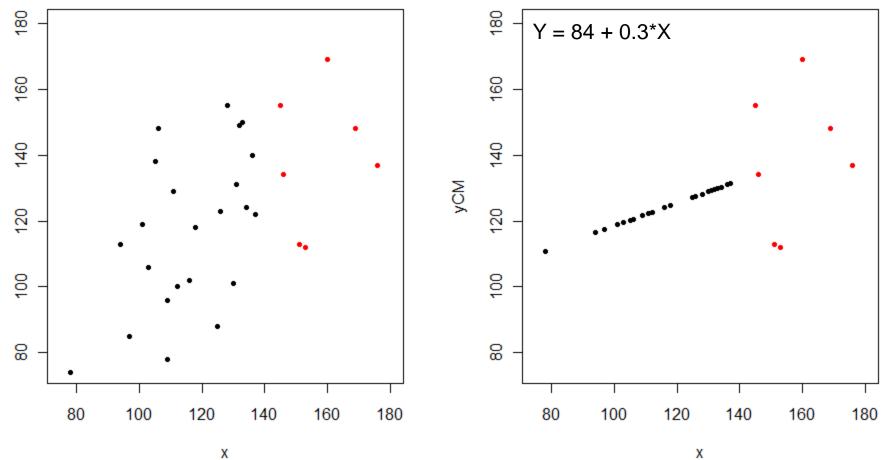
 \geq

Conditional Mean

True values

- + Conditional Mean of Y ok
- + Correlation ok
- (Conditional) Variance wrong

Conditional Mean



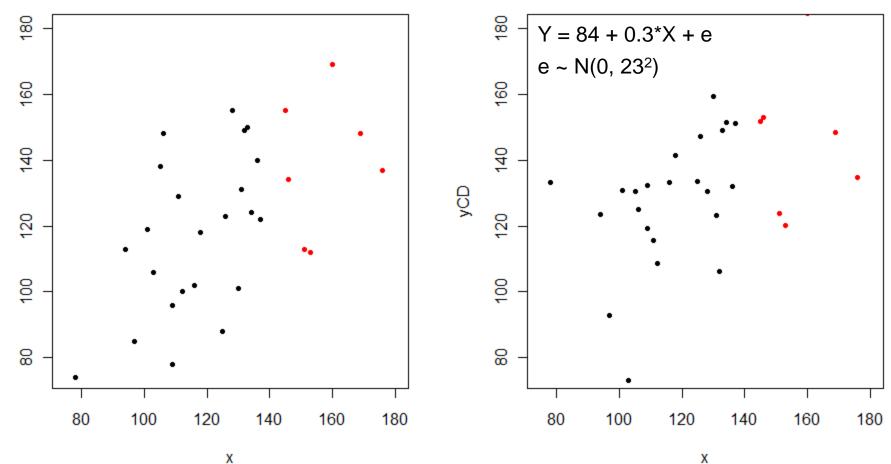
 \geq

Conditional Distribution

True values

- + Conditional Mean of Y ok
- + Correlation ok
- + Conditional Variance of Y ok

Conditional Distribution

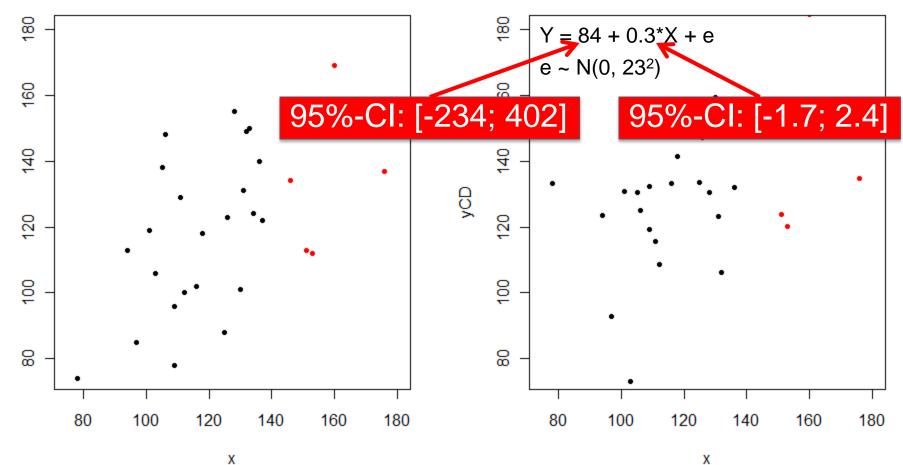


>

^c Problem: We ignore uncertainty

True values

Conditional Distribution

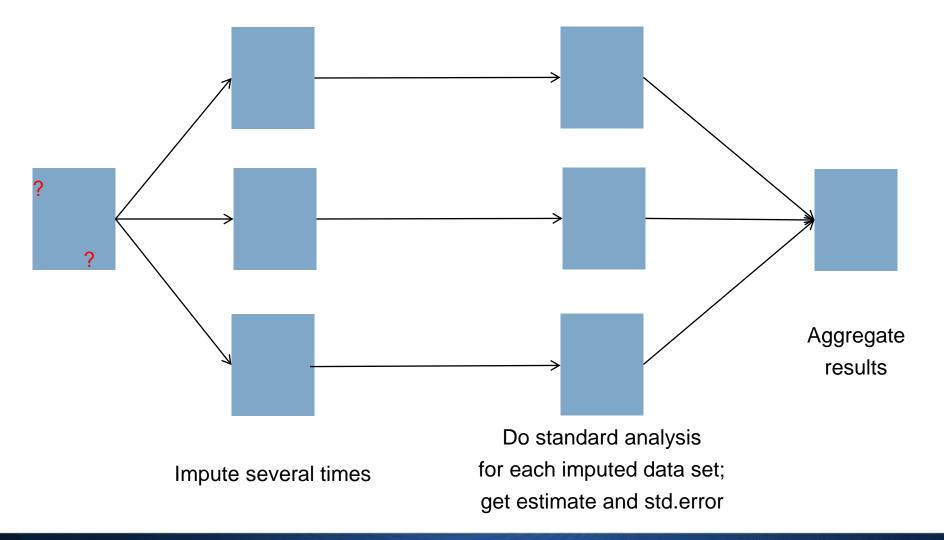


Х

Problem of Single Imputation

- Too optimistic: Imputation model (e.g. in Y = a + bX) is just estimated, but not the true model
- Thus, imputed values have some uncertainty
- Single Imputation ignores this uncertainty
- Coverage probability of confidence intervals is wrong
- Solution: Multiple Imputation Incorporates both
 - residual error
 - model uncertainty (excluding model mis-specification)

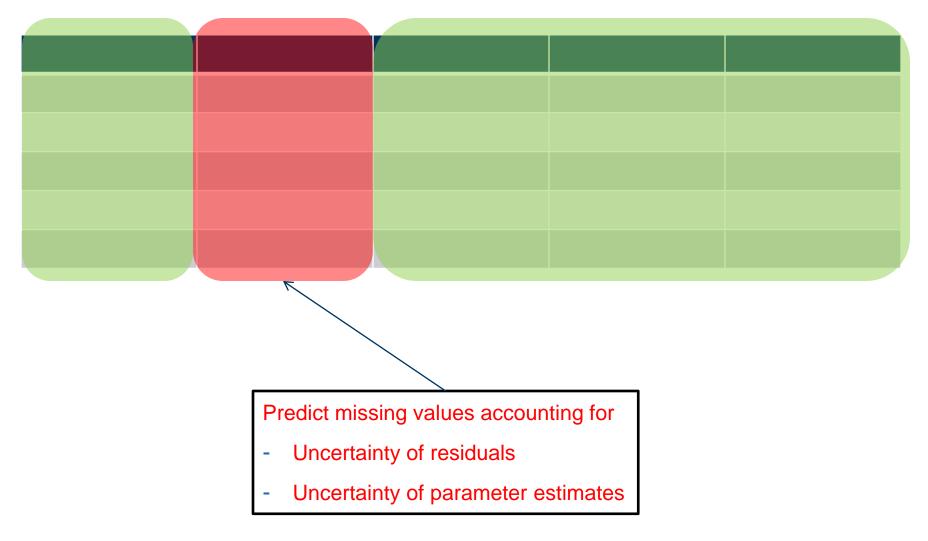
Multiple Imputation: Idea

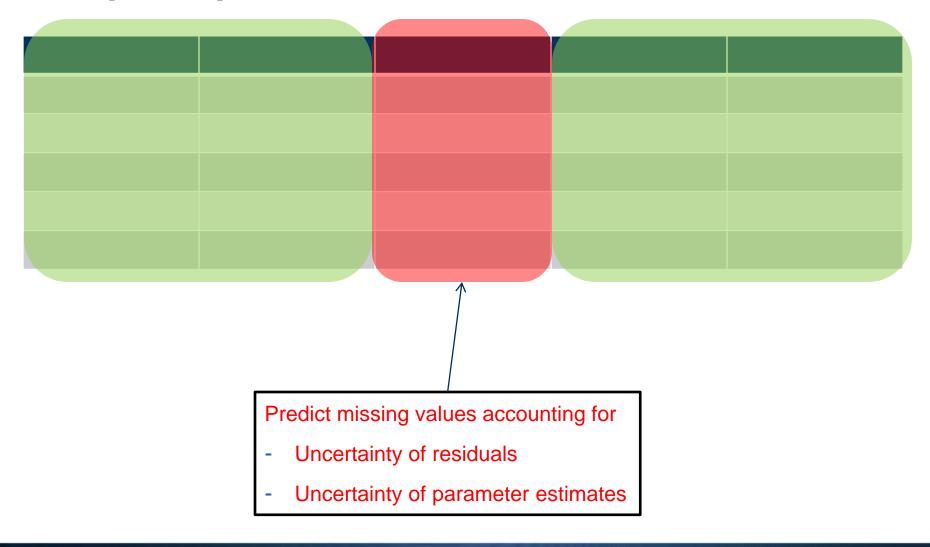


Multiple Imputation: Idea

- Need special imputation schemes that include both
 - uncertainty of residuals
 - uncertainty of model(e.g. values of intercept a and slope b)
- Rough idea:
 - Fill in random values
 - Iteratively predict values for each variable until some convergence is reached (as in missForest)
 - Sample values for residuals AND for (a,b)
- Gibbs sampler is used
- Excellent for intuition (by one of the big guys in the field): <u>http://sites.stat.psu.edu/~jls/mifaq.html</u>

Predict missing values accounting for					
	- Uncertainty of residuals				
	- Uncertainty of parameter estimates				

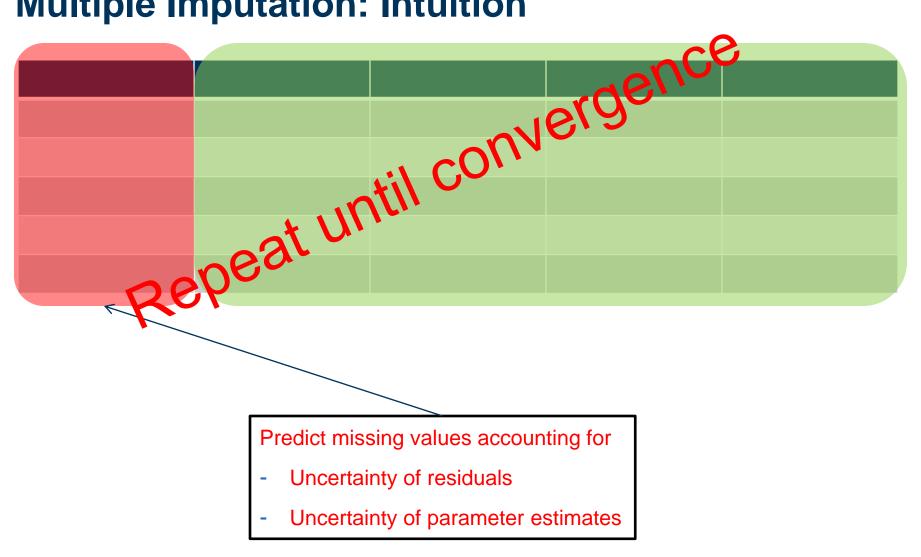




	Predict missing values accounting for			
	- Uncertainty of residuals			
	- Uncertainty of parameter estimates			

Predict missing values accounting for

- Uncertainty of residuals
- Uncertainty of parameter estimates



EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Multiple Imputation: Gibbs sampler (Not for exam)

Iteration t; repeat until convergence:
 For each variable i:

$$\begin{split} \theta_i^{*(t)} &\sim P(\theta_i | Y_i^{obs}, Y_{-i}^{(t)}) & \text{Sample (a,b)} \\ Y_i^{*(t)} & O(Y_i | Y_i^{obs}, Y_{-i}^{(t)}, \theta_i^{*(t)}) & \text{Predict missings using} \\ \text{where } Y_i^{(t)} &= (Y_i^{obs}, Y_j^{*(t)}) & \text{Predict missings using} \\ \end{split}$$

- 1

Intuition

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

R package: MICE Multiple Imputation with Chained Equations

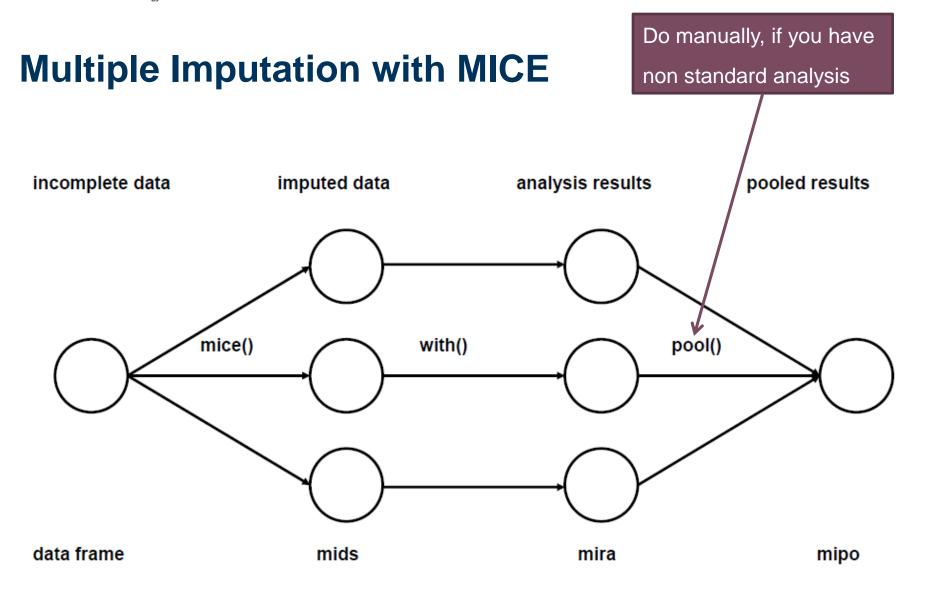
- MICE has good default settings; don't worry about the data type
- Defaults for data types of columns:
 - numeric: Predictive Mean Matching (pmm)
 (like fancy linear regression; faster alternative: linear regression)
 - factor, 2 lev: Logistic Regression (logreg)
 - factor, >2 lev: Multinomial logit model (polyreg)
 - ordered, >2 lev: Ordered logit model (polr)

Aggregation of estimates

- Q̂_i: Estimate of imputation i
 U_i: Variance of estimate (= square of std. error)
- Assume: $\frac{\hat{Q}-Q}{\sqrt{U}} \approx N(0,1)$
- Average estimate: $\bar{Q} = \frac{1}{m} \sum_{j=1}^{m} \hat{Q}_j$
- Within-imputation variance: $\bar{U} = \frac{1}{m} \sum_{j=1}^{m} \hat{U}_j$
- Between-imputation variance: $B = \frac{1}{m-1} \sum_{i=1}^{m} (\hat{Q}_i \bar{Q})^2$
- Total variance:

$$T = \bar{U} + \frac{1}{m-1}B$$

- Approximately: $\frac{\bar{Q}-Q}{\sqrt{T}} \sim t_{\nu}$ with $\nu = (m-1) \left(1 + \frac{m\bar{U}}{(1+m)B}\right)^2$
- 95%-CI: $\bar{Q} \pm t_{\nu;0.975} \sqrt{T}$



How much uncertainty due to missings?

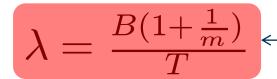
Relative increase in variance due to nonrespose:

$$r = \frac{(1 + \frac{1}{m})B}{U}$$

 Fraction (or rate) of missing information fmi: (!! Not the same as fraction of missing OBSERVATIONS)

$$fmi = \frac{r + \frac{2}{\nu + 3}}{r + 1}$$

Proportion of the total variance that is attributed to the missing data:



Returned by mice

How many imputations?

Surprisingly few!

Rule of thumb:

- Preliminary analysis: m = 5

Perfect !

- Paper:
$$m = 20$$
 or even $m = 50$

- Efficiency compared to $m = \infty$ depends on fmi:

 $eff = \left(1 + \frac{fmi}{m}\right)^{-1}$

Examples (eff in %):

Oftentimes OK

• •					
Μ	fmi=0.1	fmi=0.3	fmi=0.5	fmi=0.7	fmi=0.9
3	97	91	86	81	77
5	98	94	91	88	85
10	99	97	95	93	92
20	100	99	98	97	96

Concepts to know

- Idea of mice
- How to aggregate results from imputed data sets?
- How many imputations?

R functions to know

mice, with, pool

Next time

- Multidimensional Scaling
- Distance metrics