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= Gaussian Mixture Models
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Gaussian Mixture Models (GMMSs)



Gaussian Mixture Models (GMM)

= Gaussian Mixture Model:
f(x;p,0) = 5'{=1 Pjgj(xi 9j)
K populations with different probability distributions

= Find number of classes and parameters p; and 6; given
data

= Assign observation x to cluster |, where estimated value of

p;gi(x;6;)

fCp,0)

P(cluster j|x) =

IS largest



Example (1/6): Size of ants in two populations

Suppose ants look the same apart from size:

How can we learn about the two populations, if we can only observe a mixture of them ?

Pop 1 encountered with prob 0.3 Pop 2 encountered with prob 0.7
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Example (2/6): Someone might know, but...

o/

7 | know the true parameters —
o 7 = but I'm busy;

7 % ) Figure them out from the data !
=

< N@D N0k

horacek



Example (3/6): We just see this

and we guess that there are two Normal populations involved




Example (4/6): How likely Is the observation?

= Likelihood function for one observation Xx:

f(z;p,0) = p-

exp(—(z — p1)?/207) +

1

\/277012

1

+ (1-p)- —exp(—(z — p2)?/203)
2mo5

Parameters to estimate: p, uy, Uy, o1, 0,

= Likelihood function for n (independent)
observations Xj,...,X;:

~

f@1, 2 p, 0) = [ 1y fzs;0;0)

= For numerical reasons, compute log-Likelihood function:

~

(X1, Ty p, 0) =log(f(x1, .., Tn; P, 0))



Example (5/6): Find the set of parameters under which
the observation is most likely

Guessing the parameters:

Log-
Likelihood

-1891
0.4 3.5 5.5 1 0.5 -1723
0.7 5 7 1 1 -167/8

Etc.

Using some numerical optimization technique:

Log-
Likelihood

0.35 4.18 -1365

True parameters:

Log-
Likelihood

-1366



Example (6/6): Doing it with R

- res <- mclust (xobsz— Vector with observations

= strires)
List of 11

modelName : chr "v"

n : int 1000 Two groups were found
d D onum 1

(3 pint 2

5 B S

..— attr¥®, d1mnames J=List of 2

BIC : num [1:9, 1:2] -3120 -2826 -2840 -2854 -2812 ...

.$ @ chr [1:9] "1" "2" "3" "a" .., Optimized log-likelihood

. 5 chr [1:2] "E™ MW
.- attr{®, "G")= num [1:9] 1 2 3 4 3
..— attr{®*, "modelNames")= chr [1:.2] "E"
..— attr(®*, "oned")= logi TRUE
bic onum -2765
Toglik : num -136
parameters :List of 4
£ vinv MULL

Y 5

..$ pro : num [1:2] 0.347 0. 633¢ Probability of group 2
§ mean : Named num [1:2] 4.18

. «.— attr(*, "names")= chr [1: 2]“§;<' f;?\\\\\\\\\
. % variance:List of 5

. & modelName: chr "v"

.5 d :onum 1
.$ G :int 2
.% sigmasq : num [1:2] 1.
. % scale D num [1:2] 1.
classification: num [1:1000]
uncertainty D onum [1:1000]
z : num [1:1000,
..— attr{®, "dimnames")=List of 2
.5 NULL
. .%o NULL
- attr{¥*, "class")= chr "Mclust"

5 5 5

Variance of group 1




Revision: Multivariate Normal Distribution
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GMM: Example estimated manually

3 clusters

p,=0.7,p,=0.2,p;=0.1

Mean vector and cov. Matrix per cluster

dat[ 2]

™
—

L
_—
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Fitting GMMs 1/2

= Maximum Likelihood Method O O QO
Hard optimization problem

= Simplification: Restrict Covariance matri¢es to gertain

> U

patterns (e.g. diagonal) |[» o] |© Q
N /
Dthrihuti{ﬁl\\"‘v’{:]u]/h{*

identifier Model HC | EM H]‘ﬂpi: / (Crientation
E . e | (univariate) | “equAl

v e | e | (univariate) | varidble

EII Al . . Spherical equal

VII Apd . . Spherical | variable

EEI AA . Diagonal equal

VEI ApA . Diagonal | variable

EVI AA . Diagonal equal  wvariable

VVI ApAy . Diagonal | variable wvariable

EEE AaDADY . . Ellipsoidal | equal equal

EEV AD ADE e | Ellipsoidal | equal equal

VEV Me DR ADY . Ellipsoidal | variable equal ariable
Vv Ap D Ay D‘f . . Ellipsoidal | variable wvariable ariable
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Fitting GMMs 2/2

= Problem: Fit will never get worse if you use more cluster or
allow more complex covariance matrices
— How to choose optimal model ?

= Solution: Trade-off between model fit and model complexity
BIC = log-likelihood — log(n)/2*(number of parameters)

Find solution with maximal BIC

13



GMMs In R

= Function “Mclust” in package “mclust”

14



Linear Discriminant Analysis (LDA)



Conditional Probability

C: Patient has cancer

New sample space:
People with cancer

P(TIC)

large

Sample space

(Marginal) Probability:
P(T), P(C)

Conditional Probability:
P(TIC), P(C|T)

Bayes Theorem:

P(CIT)

small

posterior ‘{P(C|T>} 77‘

P(T|C)P(C)

Class conditional probability

£(1)

prior
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One approach to supervised learning

P(C|X) = ZXIC) P(X|C)

AN

, _ Prior / prevalence:
Find some estimate Assume:

Fraction of samples X‘C ~ N(,uc, Z]c)

in that class

Bayes rule:

Choose class where P(C|X) is maximal
(rule is “optimal” if all types of error are equally costly)

Special case: Two classes (0/1)
- choose c=1 if P(C=1|X) > 0.5 or
- choose c=1 if posterior odds P(C=1|X)/P(C=0|X) > 1

In Practice: Estimate P(C), uc, Z¢
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QDA: Doing the math... __: (—i(z — p)T25  z — o))

N{COEPE ¢
= P(C|X) ~ P(C)P(X|C)
= Use the fact: max P(C|X) < max(log(P(C|X)))

= 5.(x) = log(P(C|X)) = log(P(C)) + log(P(X|C)) =
= log(P(€)) — 5 log(IZc]) — 5 (x — )25  (x — pe) + ¢

\_'_I \ J \ J
|
Prior Additional Sqg. Mahalanobis distance
term

= Choose class where §.(x) is maximal

= Special case: Two classes
Decision boundary: Values of x where §,(x) = §;(x) is quadratic in x

» Quadratic Discriminant Analysis (QDA)
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Simplification

= Assume same covariance matrix in all classes, i.e.
X|C ~ N(ﬂc% Fix for all classes
" 5:00) = log(P(C)) — 3 log(I=) =5 (x = ) =™ (x = ) + ¢ =
= 10g(P(C)) — 5{(x — ue) ™71 — )+ d =
(=log(P(C)) + x5 e — = puf 370c)

Classify to which class (assume equal prior)?

* Physical distance in space is equal

o) : : .
* Classify to class 0, since Mahal. Dist. is smaller

19



LDA VS.

+ Only few parameters to
estimate; accurate estimates

- Inflexible
(linear decision boundary)

QDA

- Many parameters to estimate;
less accurate

+ More flexible
(quadratic decision boundary)
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Fisher’s Discriminant Analysis: Idea

Find direction(s) in which groups are separated best

1. Principal Component * ClassY, predictors X = (Xy, ..., X4)
A - U=wTX
0 . L
. . ® 1. Linear Discriminant  « Find w so that groups are separated
o © ® - along U best
o o ® 1. Canonical Variable  « Measure of separation: Rayleigh coefficient
e >
o o ¢ D(U)
° ’ Jw) = v
@ e ar(U) ,
o) ® where D(U) = (E(UlY = 0) — E(U|Y = 1))
0 ° © E[XIY =j] = p;,Var(X|y =j) =%
o = E[UIY =jl=w"p;,V({U) = w'iw
* Concept extendable to many groups
D(U) . PY
o o0 o J(w) large 3 P o o o J(w)small

+—> g

Var(U) Var(U)
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LDA and Linear Discriminants

= - Direction with largest J(w): 1. Linear Discriminant (LD 1)
- orthogonal to LD1, again largest J(w): LD 2
- etc.

= At most: min(Nmb. dimensions, Nmb. Groups -1) LD’s
e.g.: 3 groups in 10 dimensions —need 2 LD’s

= R: Function «lda» in package MASS does LDA and
computes linear discriminants (also «gda» available)
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Random Forest



Random Forest

= |ntuition of Random Forest
= The Random Forest Algorithm

= De-correlation gives better accuracy T
Di d
= Qut-of-bag error (OOB-error) i
= Variable importance m

24



Intuition of Random Forest

Tree 2
Tree 1
M ng
old young
healthy diseased
diseased healthy
mal female
tall short
healthy healthy
healthy diseased
New sample: retired working
old, retired, male, short
Tree predictions: healthy healthy
diseased, healthy,
ta”ASho "
Majority rule:
healthy diseased

diseased

25



The Random Forest Algorithm
1. Forb=1 to B:

(a) Draw a

bootstrap sample

Z" of size N from the training data.

(b) Grow a random-forest tree T}, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;,, is reached.

1. Select

m variables at random|from the p variables.

ii. Pick the best variable/split-point among the m.

1. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}5.

To make a prediction at a new point x:

Regression: fB(x) = + Zle Ty ().

Classification: Let Cy(z) be the class prediction of the bth random-forest
tree. Then CZ(x) = majority vote {Cy(x)}L.

26



Differences to standard tree

= Train each tree on bootstrap resample of data

(Bootstrap resample of data set with N samples:
Make new data set by drawing with replacement N samples; i.e., some samples will
probably occur multiple times in new data set)

= Don’t prune

= Fit B trees in such a way and use average or majority
voting to aggregate results

27



Why Random Forest works 1/2

= Mean Squared Error = Variance + Bias?
= |f trees are sufficiently deep, they have very small bias

= How could we improve the variance over that of a single
tree?
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Why Random Forest works 2/2

De-correlation gives
better accuracy

2 ol —p Decreases, if number of trees B
B increases (irrespective of p)
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Estimating generalization error:
Out-of bag (OOB) error

= Similar to leave-one-out cross-validation, but almost
without any additional computational burden

Data:

old, tall — healthy
old, short — diseased <
young, tall — healthy

I~
N
A

young, short — healthy§

old, tall — healthy

old, tall — healthy
old, short — diseased

old, short — diseased
young, tall — healthy

young, tall — healthy

L]

young, short - healthy

=

Out of bag samples:
young, short — diseased
young, tall- healthy

old, short — diseased

/om/\gung
diseased healthy
t hort

healthy diseased

!




Variable Importance for variable |

using Permutations Data
Resampled /.\ Resampled
Datasetl  Hop Dataset m 00B
Data m

d=1ym 4, |
— VDV, —
S?l:ml—l 111(di d)2 ¢
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Thank you for your attention
and
all the best for the exams!
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