Serie 7

1. Unterhalb einer Kläranlage wurden 16 unabhängige Wasserproben aus einem Fluss entnommen und jeweils deren Ammoniumkonzentration X_i (in μ gNH₄-N/l) mit einem Messgerät bestimmt. Der Mittelwert der Proben ergab $\overline{x} = 204.2$.

Wir wollen nun wissen, ob mit diesem Experiment eine Überschreitung des Grenzwerts von 200 μ gNH₄-N/l nachgewiesen werden kann (auf dem 5% Niveau).

- a) Nimm an, die Standardabweichung der Messungen sei im voraus aufgrund früherer Studien bekannt. Sie betrage 10 μ gNH₄-N/l.
 - Führe unter dieser Annahme einen z-Test durch, um zu überprüfen, ob eine Grenzwertüberschreitung nachgewiesen werden kann.
 - Gib die Modellannahmen, H_0 , H_A , den Verwerfungsbereich, den Wert der Teststatistik und das Testergebnis explizit an.
- b) Wie wahrscheinlich ist es, dass man mit 16 unabhängigen Wasserproben eine Grenzwertüberschreitung nachweisen kann, wenn die wahre Ammoniumkonzentration tatsächlich über dem Grenzwert und zwar bei 205 μ gNH₄-N/l liegt?
- c) Wie wahrscheinlich ist es, dass man mit 16 unabhängigen Wasserproben fälschlicherweise eine Grenzwertüberschreitung nachweist, obwohl die wahre Ammoniumkonzentration bei 200 μ gNH₄-N/l liegt und den Grenzwert somit genau einhält?
- 2. In dieser Aufgabe untersuchen wir die Wirkung des Zentralen Grenzwertsatzes mittels Simulation. Wir gehen von einer Zufallsvariablen X aus, die folgendermassen verteilt ist: die Werte 0, 10 und 11 werden je mit einer Wahrscheinlichkeit $\frac{1}{3}$ angenommen. Nun simulieren wir die Verteilung von X sowie die Verteilung des Mittelwerts \overline{X} von mehreren X.
 - a) Simuliere X. Stelle die Verteilung von X mittels eines Histogramms von 1000 Realisierungen von X dar, und vergleiche sie mittels des Normalplots mit der Normalverteilung.

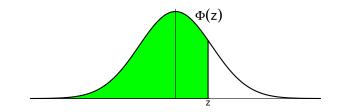
```
> par(mfrow=c(4,2)) # Mehrere Grafiken neben- und untereinander
> werte <- c(0,10,11) # moegliche Werte von X
> sim <- sample(werte, 1000, replace = T) # X simulieren
> hist(sim, main = "Original") # Histogramm erstellen
```

- > qqnorm(sim) # Normalplot erstellen
- b) Simuliere nun $\overline{X} = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$, wobei die X_i die gleiche Verteilung haben wie X und unabhängig sind. Stelle die Verteilung von \overline{X} anhand von 1000 Realisierungen von \overline{X} dar, und vergleiche sie mit der Normalverteilung.

```
> n <- 5
> ## X_1, ..., X_n simulieren und in einer n-spaltigen Matrix (mit 1000 Zeilen)
> ## anordnen
> sim <- matrix(sample(werte, n*1000, replace = T), ncol=n)
> sim.mean <- apply(sim, 1, "mean") # In jeder Matrixzeile X_quer berechnen
> hist(sim.mean, main = paste("Mittelwerte von", n, "Beobachtungen"))
> qqnorm(sim.mean)
```

c) Simuliere nun die Verteilung von \overline{X} auch für die Fälle, wo \overline{X} das Mittel von 10 resp. 200 X_i ist. Besprechung: 18., 19. April.

Tabelle der Kumulativen Normalverteilung $\Phi(z) = P\left[Z \leq z\right], \ Z \sim \mathcal{N}(0,1)$



Bsp.: $P[Z \le 1.96] = 0.975$

z	I	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0		0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
. 1		0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
.2		0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
.3	-	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
.4		0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
.5	-	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
.6	-	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
.7		0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
.8		0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
.9	-	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	-	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1		0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	-	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	-	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4		0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	-	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6		0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	-	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	-	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9		0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767