
M. Mächler Computational Statistics SS 2012

Series 2

1. The dataset prostcancer contains medical data measured on 97 men who were about to receive a
radical prostatectomy. The aim is to find out how the predictors influence the response psa, which is
an important indicator for further development of the cancer. The variables are

psa level of prostate specific antigen (response)
cavol cancer volume
weight prostate weight
age age of patient
bph benign prostatic hyperplasia amount
svi seminal vesicle invasion
cp capsular penetration
gleason gleason score
pgg45 percent of Gleason score 4 or 5

Try to find a good linear model that represents the data. Therefore, take the following steps:

1. Produce diagnostic plots such as scatterplots of the response psa versus the predictors (hint:
use pairs(prostate, pch = ".") and residual plots. Are the model assumptions valid? Which
variables need to be log-transformed?

2. Perform a stepwise variable selection. Do forward selection and backward elimination lead to the
same model? Which variables have a significant influence on the psa-level and in which direction?
Compare these results to an all-subsets regression using Mallows-Cp.

R-hints:

> ## Reading the dataset

> prostate <- read.table("http://stat.ethz.ch/Teaching/Datasets/prostcancer.dat",

header = TRUE)

> pairs(prostate, pch = ".")

> ## Fit the full model

> prost.full <- lm(psa ~ cavol+weight+age+bph+svi+cp+gleason+pgg45,

data = prostate)

> ## Fit the empty model. This is not very useful in itself, but is required

> ## as a starting model for stepwise forward variable selection

> prost.empty <- lm(psa ~ 1, data = prostate)

> ## Backward elimination, starting from the full model

> prost.bw <- step(prost.full, direction = "backward")

> ## Forward selection, starting from the empty model

> prost.fw <- step(prost.empty, direction = "forward",

scope = psa ~ cavol+weight+age+bph+svi+cp+gleason+pgg45)

> ## Loading the package for all-subsets regression

> library(leaps)

All subsets model choice, compare to the stepwise methods

prost.alls <- regsubsets(...)

Load function to produce a nice figure of C_p versus p

source("ftp://stat.ethz.ch/Teaching/maechler/CompStat/cp-plot.R")

p.regsubsets(prost.alls)

2

2. a) The artificial dataset shown in Figure 1 is generated from a mixture of two normal distributions
(see part b)). Imagine you wouldn’t know anything about the distribution and you’d want to
estimate the density by use of a kernel density estimator with Gaussian kernel. Guess a good
bandwidth.

Histogram of data

data

F
re

qu
en

cy

0 1 2 3 4

0
2

4
6

8
12

Figure 1: Artificial data from mixture of normal distributions

b) Carry out a simulation with R to evaluate the quality of bandwidths for kernel density estimation
for a mixture of normal distributions where a point is generated by a N (0, 0.01)-distribution with
probability 0.2 and by a N (2, 1)-distribution with probability 0.8. Repeat the following code 200
times for multiple bandwidth values: h = 0.02, 0.1, 0.3, 0.6, 1, 1.5, as well as h equal to your
own guess from part a) and to a plug-in estimate of the optimal bandwidth (see below):

1. Generate a dataset of 100 points from the mixture distribution from above:

> set.seed(1)

> data <- numeric(100)

> for(i in 1:100){

p <- runif(1, min = 0, max = 1)

if (p < 0.2)

data[i] <- rnorm(1, mean = 0, sd = sqrt(0.01))

else

data[i] <- rnorm(1, mean = 2, sd = 1)

}

2. Compute the kernel density estimator with the function density. Consult help(density) to
understand the syntax.

> ke <- density(data, bw = 0.1, n = 61, from = -1, to = 5)

An estimated plug-in bandwidth is obtained by using bw ="sj".

3. In the lecture, we saw that the goodness of a kernel estimate can be measured using the inte-
grated mean squared error (IMSE). In practice, the IMSE can be approximated by averaging
the squared difference between the kernel estimator and the true density values at the multiple
datapoints −0.2, 0, 0.2, 0.5, 1, 1.5, 2, 2.5, 3, 4:

> index <- c(9, 11, 13, 16, 21, 26, 31, 36, 41, 51)

> ke$x[index] ## -0.2 0.0 0.2 0.5 1.0 1.5 2.0 2.5 3.0 4.0

> ## Compute the true density at the given datapoints

> dmix <- 0.2 * dnorm(ke$x[index], mean = 0, sd = sqrt(0.01)) +

0.8 * dnorm(ke$x[index], mean = 2, sd = 1)

> ## Take the mean of the squared differences

> quality <- mean((ke$y[index] - dmix)^2)

Note that the commands given above are suitable for a single execution, but not necessarily for
the full simulation. For example, you will need a vector of the qualities of all simulation runs. You

3

may define a matrix for the qualities to store the results for all different bandwidths. Consider
help(matrix), help(apply).

Compute and compare the averaged quality of the kernel estimators for the different bandwidths.

c) (Optional) Repeat the whole project with the Epanechnikov kernel, which can be obtained by
specifying kernel="epanechnikov" in density.

Preliminary discussion: Friday, March 09.

Deadline: Friday, March 16.

