Introduction to Generalized Linear Models

Myriam Riek

May 17, 2010

Introduction to Generalized Linear Models

Myriam Riek

Outline

seneralization of the linear model

Canonical pdf and canonical link

parameters

Inference or parameters

Model fit and liagnostics

Examples

Outline

Generalized Linear Models

Introduction to

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and

Estimation parameters

Inference on parameters

Model fit and

xamples

Summary and

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

Inference on parameters

Model fit and diagnostics

Examples

Recall the Linear Model

n independent observations of response variable Y

with
$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$
 $i = 1, \dots, n$

and
$$\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

Simple example:
$$\mathbf{x}_{i}^{T}\beta = \begin{pmatrix} 1 \\ x_{i} \end{pmatrix}^{T} \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix} = \beta_{0} + \beta_{1}x_{i}$$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

stimation of arameters

Inference on parameters

Model fit and diagnostics

xamples

Some Definitions

Linear predictor

$$\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

Inverse link function

$$\mu_i = g^{-1}(\eta_i)$$

Link function

$$\eta_i = g(\mu_i)$$

Linear model: $\mu_i = \eta_i$, i.e., $g = g^{-1} = \text{identity}$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation o

Inference on parameters

Model fit and diagnostics

Examples

The Generalized Linear Model

Generalization

- (i) $Y_i \sim F(\mu_i)$ $F \in \mathcal{F} = ext{exponential family of distributions}$
- (ii) $g(\mu_i)$ any suitable function preferably accounting for restrictions in μ_i and η_i dependent on F

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

Inference on parameters

Model fit and liagnostics

Examples

Exponential Family of Distributions (EFD)

Introduction to Generalized Linear Models

Myriam Riek

Dutline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

Inference on parameters

Model fit and

Examples

Summary and

Examples for F

- Normal
- Bernoulli
- Binomial
- Poisson

- Exponential
- Gamma
- _

Logistic Regression

n independent observations of response variable Y

Binary data $Y \in \{0, 1\}$

$$Y_i \sim \mathsf{Bern}(\mu_i)$$
 $\mathsf{E}[Y_i] = \mu_i$ $\mathsf{var}(Y_i) = \mu_i(1 - \mu_i)$

Proportions $Y \in (0,1)$

$$Y_i = rac{Z_i}{m_i} \sim \mathcal{B}(m_i, \mu_i) \quad \mathsf{E}[Y_i] = \mu_i \quad \mathsf{var}(Y_i) = rac{\mu_i (1 - \mu_i)}{m_i}$$

Link function

Inverse link function

$$\eta_i = g(\mu_i) = \log(\frac{\mu_i}{1-\mu_i}) \qquad \mu_i = g^{-1}(\eta_i) = \frac{e^{\eta_i}}{1+e^{\eta_i}}$$
(logit) (logistic)

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

nference on parameters

Model fit and diagnostics

xamples

Log-Poisson Regression

n independent observations of response variable Y

$$Y_i \sim \mathcal{P}(\mu_i)$$
 $\mathsf{E}[Y_i] = \mu_i$ $\mathsf{var}(Y_i) = \mu_i$

Link function

Inverse link function

$$\eta_i = g(\mu_i) = \log(\mu_i)$$
 $\mu_i = g^{-1}(\eta_i) = e^{\eta_i}$
(log) (exp)

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

stimation of arameters

Inference on parameters

Model fit and diagnostics

Examples

The pdf (or pmf) of $Y_i \sim F(\mu_i) \in \mathcal{F}$ can be written in so called canonical form

$$f(y_i|\theta_i,\tau^2,\omega_i) = \exp(\frac{\theta_i y_i - d(\theta_i)}{\tau^2}\omega_i)h(y_i,\tau^2,\omega_i)$$

where

 $egin{array}{ll} heta_i & {
m canonical\ parameter} \ & au^2 & {
m dispersion\ parameter\ (fixed)} \ & \omega_i & {
m some\ number\ (=1,\ for\ binomial\ data = m_i)} \ & d(heta_i) & {
m characteristic\ function\ for\ } F \ & h(y_i, au,\omega_i) & {
m normalizing\ function\ ,\ characteristic\ for\ } F \ \end{array}$

$$\mathsf{E}[Y_i] = \mu_i = d'(heta_i) \qquad \mathsf{var}(Y_i) = d''(heta_i) rac{ au^2}{\omega_i} =
u(\mu_i) rac{ au^2}{\omega_i}$$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of he linear model

Canonical pdf and canonical link

Estimation o parameters

nference on parameters

Model fit and diagnostics

examples

Examples of Canonical pdf for EFD

Normal data

$$egin{aligned} heta_i &= \mu_i, \quad d(heta_i) = rac{ heta_i^2}{2}, \quad
u(\mu_i) = 1, \\ \omega_i &= 1, \quad au^2 = \sigma^2 \ ext{(nuisance parameter)} \end{aligned}$$

$$\rightarrow \mathsf{E}[Y_i] = \mu_i = \theta_i \quad \mathsf{var}(Y_i) = \tau^2$$

Binary data

$$egin{aligned} heta_i &= \log(rac{\mu_i}{1-\mu_i}), \quad d(heta_i) = \log(1+e^{ heta_i}), \
u(\mu_i) &= \mu_i(1-\mu_i), \quad \omega_i = 1, \quad au^2 = 1 \
otag &= \operatorname{E}[Y_i] = \mu_i = rac{\exp heta_i}{1+\exp heta_i} \qquad \operatorname{var}(Y_i) = \mu_i(1-\mu_i) \end{aligned}$$

Poisson data

$$egin{aligned} heta_i &= \log(\mu_i), \quad d(heta_i) = \mathrm{e}^{ heta_i}, \quad
u(\mu_i) = \mu_i, \\ \omega_i &= 1, \quad au^2 = 1 \end{aligned}
onumber \ \mathrm{E}[Y_i] = \mu_i = \mathrm{e}^{ heta_i} \quad \mathrm{var}(Y_i) = \mu_i$$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

parameters

Model fit and diagnostics

LAampies

Canonical Link Functions

Special class of link functions with nice mathematical properties

Definition

Link η_i to the canonical parameter θ_i ,

with
$$\theta_i = \eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

Examples

Normal data identity
Bernoulli/binomial data logit

Poisson data log function

In what follows we are considering the canonical link function only

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of he linear model

Canonical pdf and canonical link

Estimation of parameters

nference on parameters

Model fit and liagnostics

Examples

Canonical pdf and canonical link

Estimation of parameters

Interence on parameters

Model fit and diagnostics

Examples

Summary and

Maximum likelihood principle used for deriving estimates of β , i.e.,

$$\frac{\partial \ell(\mathbf{y}, \beta)}{\partial \beta} \Big|_{\beta = \hat{\beta}} = \sum_{i=1}^{n} \frac{\partial \log f(y_i, \eta_i)}{\partial \eta_i} \frac{\partial \eta_i}{\partial \beta} \Big|_{\beta = \hat{\beta}}$$

$$= \Sigma_{i=1}^n \tfrac{y_i - d'(\eta_i)}{\tau^2} \omega_i \mathbf{x}_i \bigg|_{\beta = \hat{\beta}} = 0 \text{ (for canonical link)}$$

solved using a modification of the iterative Newton-Raphson algorithm called Fisher's method of scoring

Recall Newton-Raphson

At (k + 1)-th iteration:

$$\hat{\beta}^{(k+1)} = \hat{\beta}^{(k)} - \mathbf{H}^{-1}(\hat{\beta}^{(k)}) \frac{\partial \ell(\mathbf{y}, \beta)}{\partial \beta} \Big|_{\beta = \hat{\beta}^{(k)}}$$

with (for canonical link)

$$\mathbf{H}(\hat{\beta}^{(k)}) = \frac{\partial^2 \ell(\mathbf{y}, \beta)}{\partial \beta \partial \beta^T} \Big|_{\beta = \hat{\beta}^{(k)}} = -\sum_{i=1}^n \frac{d''(\eta_i)}{\tau^2} \omega_i \mathbf{x}_i \mathbf{x}_i^T \Big|_{\beta = \hat{\beta}^{(k)}}$$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

Inference on parameters

Model fit and liagnostics

Examples

Fisher's Method of Scoring (1)

Replaces

$$\mathsf{H}(\hat{eta}^{(k)})$$

with

$$\mathsf{E}[\mathsf{H}(\hat{\beta}^{(k)})] = \mathsf{E}\Big[\frac{\partial^2 \ell(\mathbf{y}, \beta)}{\partial \beta \partial \beta^T}\Big|_{\beta = \hat{\beta}^{(k)}}\Big] = -\mathsf{I}(\hat{\beta}^{(k)})$$

the Fisher information matrix. Thus,

$$\hat{\beta}^{(k+1)} = \hat{\beta}^{(k)} + \mathbf{I}^{-1}(\hat{\beta}^{(k)}) \frac{\partial \ell(\mathbf{y}, \beta)}{\partial \beta} \Big|_{\beta = \hat{\beta}^{(k)}}$$

For canonical link

$$\mathbf{I}(\hat{eta}^{(k)}) = -\mathbf{H}(\hat{eta}^{(k)})$$

i.e., Fisher scoring and Netwon-Raphson are equivalent

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and anonical link

Estimation of parameters

Inference on parameters

Model fit and liagnostics

Examples

outlook

Fisher's Method of Scoring (2)

Since (for canonical link)

$$\mathbf{I}(\hat{\beta}^{(k)}) = \sum_{i=1}^{n} \frac{d''(\eta_i)}{\tau^2} \omega_i \mathbf{x}_i \mathbf{x}_i^T \Big|_{\beta = \hat{\beta}^{(k)}} \quad \text{and} \quad \frac{\partial \ell(\mathbf{y}, \beta)}{\partial \beta} \Big|_{\beta = \hat{\beta}^{(k)}} = \sum_{i=1}^{n} \frac{y_i - d'(\eta_i)}{\tau^2} \omega_i \mathbf{x}_i \Big|_{\beta = \hat{\beta}^{(k)}}$$

hence

$$\hat{eta}^{(k+1)} = \hat{eta}^{(k)} + (\mathbf{X}^T \mathbf{\Omega}^{(k)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Omega}^{(k)} \tilde{\mathbf{Y}}^{(k)}$$

where

$$\mathbf{\Omega}^{(k)} = \mathsf{diag}(d''(\eta_1)\omega_1ig|_{eta=\hat{eta}^{(k)}},\ldots,d''(\eta_n)\omega_nig|_{eta=\hat{eta}^{(k)}})$$
 and

$$\tilde{\mathbf{Y}}^{(k)} = \left(\frac{y_1 - d'(\eta_1)}{d''(\eta_1)}\Big|_{\beta = \hat{\beta}^{(k)}}, \dots, \frac{y_n - d'(\eta_n)}{d''(\eta_n)}\Big|_{\beta = \hat{\beta}^{(k)}}\right)^T$$

Introduction to Generalized Linear Models

Myriam Riek

utline

eneralization of ne linear model

Canonical pdf and canonical link

Estimation of parameters

Inference on parameters

agnostics .

:xampies

Iteratively Weighted Least Squares

Equivalent to ML approach using Fisher scoring Since

$$\hat{\beta}^{(k+1)} = \hat{\beta}^{(k)} + (\mathbf{X}^T \mathbf{\Omega}^{(k)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Omega}^{(k)} \tilde{\mathbf{Y}}^{(k)}
= (\mathbf{X}^T \mathbf{\Omega}^{(k)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Omega}^{(k)} (\mathbf{X} \hat{\beta}^{(k)} + \tilde{\mathbf{Y}}^{(k)})
= (\mathbf{X}^T \mathbf{\Omega}^{(k)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Omega}^{(k)} \mathbf{T}^{(k)}$$

hence $\hat{\beta}^{(k+1)}$ are the weighted least squares solution for regressing $\mathbf{T}^{(k)}$, the linearized response, linearly on \mathbf{X}

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

Interence on parameters

Model fit and diagnostics

xamples

Distribution of MLE

$$\hat{eta} \sim^{app} \mathcal{N}_p(eta, \mathbf{I}^{-1}(\hat{eta}))$$

$$\mathbf{I}^{-1}(\hat{eta}) = au^2 (\mathbf{X}^T \mathbf{\Omega}(\hat{eta}) \mathbf{X})^{-1}$$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

stimation of arameters

Inference on parameters

Model fit and diagnostics

Examples

Assuming normality for $\hat{\beta}$ holds, the Wald test statistic W for a linear combination $\mathbf{B}\beta$ of β , \mathbf{B} being a $(q \times p)$ matrix, is

$$W = (\mathbf{B}\hat{\beta} - \mathbf{B}\beta)^T \mathbf{V}^{-1} (\mathbf{B}\hat{\beta} - \mathbf{B}\beta) \sim \chi_q^2$$

with

$$\mathbf{V} = \mathsf{cov}(\mathbf{B}\hat{eta}) = \mathbf{B}\mathbf{I}^{-1}(\hat{eta})\mathbf{B}^{T}$$

E.g.,

$$W = \frac{(\hat{\beta}_j - \beta_j)^2}{\mathbf{I}^{-1}(\hat{\beta})_{jj}} \sim \chi_1^2 \text{ or } \sqrt{W} = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\mathbf{I}^{-1}(\hat{\beta})_{jj}}} \sim \mathcal{N}(0, 1)$$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

Inference on parameters

Model fit and diagnostics

Examples

Wald Tests and Cls (2)

A $(1-\alpha)100\%$ -Cls for ${\bf B}\beta$ based on the Wald test statistic is

$$\{b: W = (\mathbf{B}\hat{\beta} - b)^T \mathbf{V}^{-1} (\mathbf{B}\hat{\beta} - b) \le \chi^2_{q,1-\alpha}\}$$

E.g.,

$$\hat{eta}_j \pm z_{1-lpha/2} \sqrt{\mathbf{I}^{-1}(\hat{eta})_{jj}}$$

Note that these CIs are symmetric around $\mathbf{B}\hat{\beta}$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

stimation of arameters

Inference on parameters

Model fit and diagnostics

Examples

Likelihood Based Tests and Cls (1)

A likelihood ratio test (LRT) compares the maximum \mathcal{L}_{H_0} with the maximum $\mathcal{L}_{H_A\supset H_0}$

$$LRT-{
m statistic} = -2(\ell_{H_0} - \ell_{H_A \supset H_0}) \sim^{\it app} \chi_q^2 \ ({
m if} \ H_0 \ {
m is true})$$

where q is the difference in df

E.g.,

$$LRT$$
 – statistic = $-2(\ell_{\hat{\beta}|\beta_i} - \ell_{\hat{\beta}}) \sim^{app} \chi_1^2$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of he linear model

Canonical pdf and canonical link

arameters

Inference on parameters

Model fit and diagnostics

Examples

Likelihood Based Tests and Cls (2)

A $(1-\alpha)100\%$ -CI for e.g. β_j based on the LRT statistic is

$$\{b: LRT - \text{statistic} = -2(\ell_{\hat{\beta}|\beta_i=b} - \ell_{\hat{\beta}}) \le \chi^2_{1,1-\alpha}\}$$

Note that LRT-based CIs must not be symmetric around the MLE

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

stimation of arameters

Inference on parameters

Model fit and diagnostics

camples

Deviance - Assessing Model Fit

Measure of how good the data is represented by the fitted model (goodness of fit)

Definition

Deviance $D = -2(\ell_M - \ell_F)$ (up to a factor τ^2)

where $\ell_M = \text{log-likelihood of fitted model } M$

and $\ell_F = \text{maximized log-likelihood under the full model}$ F (n parameters)

Distribution

 $D \sim^{\mathrm{app}} \chi^2_{n-p}$ if M is correct (approx. may be poor)

Note

- $D \not\sim^{\rm app} \chi^2_{n-p}$, not a measure of goodness of fit for binary data
- D= residual SS for normal data and $\sim au^2\chi^2_{n-p}$

Introduction to Generalized Linear Models

Myriam Riek

outline

Generalization of he linear model

Canonical pdf and canonical link

Estimation of parameters

nference on parameters

Model fit and diagnostics

examples

Assumptions

- Independent observations
- Specified model is correct, i.e.,

-
$$Y_i \sim F(\mu_i)$$

$$-\mu_i = g^{-1}(\eta_i)$$

-
$$\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

These assumptions should to be checked \rightarrow residuals

Introduction to Generalized Linear Models

Myriam Riek

Outline

che linear model

Canonical pdf and canonical link

Estimation of parameters

nference on parameters

Model fit and diagnostics

Examples

Residuals

Definition

Measure of agreement between the individual observed response and its fitted value

Example

Linear model: $y_i - \hat{\mu}_i$

- estimate for ε
- measure for each observation's contribution to the residual SS or deviance

Use

Residuals form the basis of many diagnostic techniques

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

parameters

Inference on parameters

Model fit and diagnostics

Examples

Residuals for GLMs (1)

Problematic

No best way of measuring agreement between observed and fitted value

- → several types of residuals
- → usefulness dependent on F

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

parameters

Inference on parameters

Model fit and diagnostics

Examples

Model fit and diagnostics

Analogons of $y_i - \hat{\mu}_i$

Raw or response residual
$$R_i^{(R)}$$

Working residual
$$R_i^{(W)}$$

al
$$R_i^{(vv)}$$

Pearson residual
$$R_i^{(P)}$$

Standardized Pearson residual $R_{:}^{(SP)}$

$$=R_i^{(R)}/\sqrt{\frac{\nu(\hat{\mu}_i)}{\omega_i}}$$

 $= \mathbf{v}_i - \hat{\mu}_i$

$$= R_i^{\times} / \sqrt{\frac{\omega_i}{\omega_i}}$$

 $=R_i^{(R)}/\nu(\hat{\mu}_i)=\tilde{Y}_i$

$$=R_i^{(R)}/\sqrt{rac{ ext{var}(R_i^{(R)})}{ au^2}}$$

$$(\hat{\mathsf{var}}(R_i^{(R)}) = \tau^2 \mathbf{\Omega}_{ii}^{-1} [\mathbf{I} - \mathbf{\Omega}^{1/2} \mathbf{X} (\mathbf{X}^T \mathbf{\Omega} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Omega}^{1/2}]_{ii} = \tau^2 \mathbf{\Omega}_{ii}^{-1} (1 - \mathbf{P}_{ii}) \text{ evaluated at } \hat{\mu}_i)$$

Residuals for GLMs (3)

Analogon of *i*-th's contribution to deviance

Deviance residual
$$R_i^{(D)}$$

$$=\operatorname{sgn}(R_i^{(R)})\sqrt{d_i}$$

with
$$\sum_{i=1}^{n} d_i = D$$

Standardized Deviance residual
$$R_i^{(SD)} = R_i^{(D)}/(1-\mathbf{P}_{ii})$$

Preferred by many

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and

stimation of arameters

nference on parameters

Model fit and diagnostics

Examples

Diagnostic Plots (1)

Analogous approach to linear model

Tukey-Anscombe

e.g., working residuals vs $\hat{\eta}_i$ or deviance residuals vs $\hat{\eta}_i$ or $\hat{\mu}_i$

 \rightarrow there should be no structure (smoothing graph for ease of interpretation)

Linear predictor

plot residuals vs covariates to identify additional relevant covariates or transformation of covariates

Link function

e.g., linearized response (T) vs $\hat{\eta}$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

nference on parameters

Model fit and diagnostics

xamples

Diagnostic Plots (2)

Distribution F overdispersion

Outliers, influential observations

Interpretation of diagnostic plots may be very difficult, especially for binary data (\rightarrow example later)

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

parameters

Inference on parameters

Model fit and diagnostics

Examples

Canonical pdf

$$f(y_i|\eta_i, \tau^2, \omega_i) = \exp\left(\frac{\eta_i y_i - d(\eta_i)}{\tau^2}\omega_i\right) h(y_i, \tau^2, \omega_i)$$

Dispersion parameter $\tau^2 = 1$

for Bernoulli, Binomial, Poisson distribution

$$\Rightarrow \operatorname{var}(Y_i) = \frac{\nu(\mu_i)}{\omega_i}$$

Overdispersion

e.g., assuming var $(Y_i) = \tau^2 \frac{\nu(\mu_i)}{\omega_i}$, $\tau^2 > 1$, estimated from data

Introduction to Generalized Linear Models

Myriam Riek

Dutline

Generalization of he linear model

Canonical pdf and canonical link

Estimation or parameters

nference on parameters

Model fit and diagnostics

xamples

Quasi-Likelihood

Assuming a quasi-distribution leads to maximum quasi-likelihood estimators of β

Assumptions

- var $(Y_i) \propto \frac{\nu(\mu_i)}{\omega}$, i.e., same relationship as for underlying 'parent' F up to the factor τ^2
- link function g

 \Rightarrow same $\hat{\beta}$ and deviance as ML approach based on 'parent' F and g

$$\Rightarrow \hat{ au}^2 = \frac{1}{n-p} \sum_{i=1}^n (R_i^{(P)})^2 \text{ (or } \frac{1}{n-p}D)$$

- \Rightarrow cov($\hat{\beta}$) \uparrow and CIs \uparrow compared to ML approach
- \Rightarrow approximate F-tests instead of LRTs

R Function glm()

glm(formula=response \sim x's, family=, offset=)

For binomial data, response is given as cbind(# successes, # failures) with length n

Starting values must not be provided

 \rightarrow examples

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

nference on parameters

Model fit and liagnostics

Examples

Binary Data

Artificial data

$$\textit{n} = 100$$
 observations of $\textit{Y} \in \{0,1\}$

with

$$\mu_i = \frac{\exp\left(0.5x_i\right)}{1 + \exp\left(0.5x_i\right)}$$

Call: $glm(y \sim x, family=binomial)$

$$\rightarrow R$$

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

parameters

nference on parameters

Model fit and liagnostics

Examples

Estimation o parameters

Inference on parameters

Model fit and diagnostics

Real data

n = 32 observations on the number of faults in rolls of fabric

Possible model for μ_i :

$$\mu_i = \mu * length_i$$
 $\mu = \# faults/unit length$

$$\eta_i = \log \mu_i = \log \mu + \log \operatorname{length}_i = \beta_0 + \operatorname{offset}_i$$

Call: $glm(faults \sim 1, offset = log(length), family = poisson)$

$$\rightarrow R$$

Summary and Outlook

Summary

Generalization of linear model to

- any distribution from exponential family of distributions
- any suitable link between μ_i and η_i
- ightarrow we can now deal with more than just normal data

Outlook

Inclusion of random effects

Introduction to Generalized Linear Models

Myriam Riek

Outline

Generalization of the linear model

Canonical pdf and canonical link

Estimation of parameters

Inference on parameters

Model fit and liagnostics

examples