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Recall the Linear Model

n independent observations of response variable Y
with Y; ~ N (p;, 02) i=1,...,n
and u; = x/ 3

i

Xi

-2 (2)-
imple example: x/ 3 = 8 = fo + B1x;
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Linear predictor
ni=x/p

Inverse link function
i =g (i)

Link function

ni = g(ui)

Linear model: p; = n;, i.e., g = g~ ! = identity
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Generalization of

Generallzatlon the linear model
(i) i~ F(ui)

F € F = exponential family of distributions

(ii) g(u;) any suitable function
preferably accounting for restrictions in p; and 7;

dependent on F



Exponential Family of Distributions (EFD)

Examples for F

- Normal - Exponential
- Bernoulli - Gamma
- Binomial - ...

Poisson

Introduction to
Generalized Linear
Models

Myriam Riek

Generalization of
the linear model



Logistic Regression

n independent observations of response variable Y
Binary data Y € {0,1}

Yi~Bemn(y)  E[Yil=pi  var(Y) = (1 — )
Proportions Y € (0,1)

Yi= %, ~ B(m;, i) E[Yi] = pi var(Yi) = pil=pi)

Link function Inverse link function
ni = g(:ui) = |Og(1ﬁ_:u,) Hi = gil(ni) - 1:::;71;
(logit) (logistic)
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Generalization of
the linear model

n independent observations of response variable Y
Yie P(ui)  E[Yil=pi  var(Yi) =
Link function Inverse link function
i =g(w) =log(pi)  pi=g 7 (n)=e"
(log) (exp)
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The pdf (or pmf) of Y; ~ F(u;) € F can be written in '
so called canonical form
Oiyi — d(0
01,72 ) = exp(H= SR e
where
0; canonical parameter
72 dispersion parameter (fixed)
w; some number (= 1, for binomial data = m;)
d(6;) characteristic function for F

h(y;, 7,w;) normalizing function, characteristic for F

EIV] = = d'(0)  var(Y)) = d"(6) " = v(u)

Wi Wi
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Normal data »
O =pi, d0)=75, v(w)=1
w; =1, 7%= 0? (nuisance parameter)
Canonical pdf and

— E[K] = Ui = 6,’ Var(Y,-) = T2 canonical link
Binary data

0; =log(7-), d(0;) = log(1 + €”),

v(p) = wi(l—p), wi=1 7*=1

— ElYi] =i = 1520y var(Y) = wi(l — )

Poisson data

0; =log(ui), d(0i)=e€"  v(w)=p,
Wi = ]., T2 =1

= E[Y]=pm=¢€" var(Y)) =y



Canonical Link Functions

Special class of link functions with nice mathematical
properties

Definition
Link 7; to the canonical parameter 6;,

with 9,’ =1 = XTB

i

Examples
Normal data identity
Bernoulli/binomial data logit
Poisson data log function

In what follows we are considering the canonical link
function only
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Maximum likelihood principle used for deriving estimates
of 3, ie.,

Estimation of
parameters

2U(y,B) _ yn  Ologf(yimi) n;
B |s_p =1 9n ap

p=p

FR— 4 . . .
= Z?Zl%w;x,- =0 (for canonical link)

solved using a modification of the iterative
Newton-Raphson algorithm called Fisher's method of
scoring
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At (k + 1)-th iteration:

Estimation of

3 A 17400194y, 5)
(k+1) — B0 _ g=1(50) _’ :
6 /8 (5 ) 85 ﬁ:[;’(k) parameters

with (for canonical link)

. 0U(y, B . d'(ni
H(A®) — # e _ oy ) T
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H(3")
with
A 0*((y. B) 3
(k) — —7 = — (k) Estimation of
E[H(/B )] E|: 8/38/87— ‘B_B"(k)] l(ﬁ ) parameters

the Fisher information matrix. Thus,

B(kJrl) _ B(k) + |1(B(k))%ﬁ’6)‘ﬁ—ﬁm

For canonical link
1(3%0) = —H(3W)

i.e., Fisher scoring and Netwon-Raphson are equivalent



Fisher's Method of Scoring (2) enraioed Line,

Generalized Linear

Models
Since (for canonical link)

Myriam Riek

1(30) = 21, L)

- WiXiX; 500 and
oy, 3) w0 Yi—d(m) e
8/8 . = i=1 —2wixi R stimation of
6:6(") T B_B(k) parameters

hence

ﬁ (k+1) _ 5(k (XTQ(k)X) 1XTQ ?

where

Q) — diag(d”(n1)ws|5_gu0: -~ d"(n)wn| 5_gy)  and

v = (N d'(m) Yo — d'(1n)

el
d"(m) ls=pt d"(nn)

B=Bk)



lteratively Weighted Least Squares

Equivalent to ML approach using Fisher scoring
Since
Bkt Bk +(XTQ®W X)—IXTQ(k)?(k)
= (XTQWX)~ 1XTQ(’<)(X3(/‘) + ?(k))
( TQ(k ) leQ(k)T(k)

hence A1) are the weighted least squares solution for
regressing T(K) the linearized response, linearly on X
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Distribution of MLE

B~ No(5,171(5))

17(5) = ~2(XTQ(A)X)
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Assuming normality for 3 holds, the Wald test statistic
W for a linear combination B of 3, B being a (g x p)
matrix, is

W = (Bf — B3)"V™(Bf — BS) ~ x?
with e
V= cov(BBA) = Bl_l(B)BT
Eg.,
w o W= 5) o or VIV = 5 0, 1)
1=1(5); 1-1(3);



Wald Tests and Cls (2)

A (1 — a))100%-Cls for B/3 based on the Wald test
statistic is

{b: W= (B3—b)VBS—b) <3 o}
Eg.,

Bj T 271 a2 |*1(B)jj

Note that these Cls are symmetric around Bj
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Likelihood Based Tests and Cls (1)

A likelihood ratio test (LRT) compares the maximum
L, with the maximum Ly,5H,

LRT —statistic = —2(Lpy,—Lr,5H,) ~7P X (if Ho is true)
where g is the difference in df
Eg.,

LRT — statistic = —2(63‘@_ — f,@) ~3PP A2
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Likelihood Based Tests and Cls (2)

A (1 — «)100%-Cl for e.g. (; based on the LRT statistic

IS

{b: LRT — statistic = ~2((35 _, — (5) < X3 1o}

Note that LRT-based Cls must not be symmetric around
the MLE
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Deviance - Assessing Model Fit

Measure of how good the data is represented by the
fitted model (goodness of fit)

Definition
Deviance D = —2(¢y; — ¢F) (up to a factor 72)
where ¢y, = log-likelihood of fitted model M

and /¢ = maximized log-likelihood under the full model
F (n parameters)

Distribution
D ~2rP X%_p if M is correct (approx. may be poor)

Note

2 .
- D 7*PP X_p» NOt @ measure of goodness of fit for
binary data

- D = residual SS for normal data and ~ 72x7_,
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Diagnostics - Assessing Adequacy of Generalzd Linear
Fitted I\/Iodel Myriam Riek

Assumptions
- Independent observations

- Specified model is correct, i.e.,

Model fit and
- \/I ~ F(,U,) diagnostics
- i =g M (m)
- ni=x/f

These assumptions should to be checked — residuals



Residuals

Definition
Measure of agreement between the individual observed
response and its fitted value

Example
Linear model: y; — [i;

- estimate for ¢

- measure for each observation’s contribution to the
residual SS or deviance

Use

Residuals form the basis of many diagnostic techniques
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Problematic
No best way of measuring agreement between observed
and fitted value
— several types of residuals Model it and
iagnostics

— usefulness dependent on F
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Analogons of y; — [i;
Raw or response residual R,-(R) =y — [ij
Working residual R,(W) = R,-(R)/l/(/i,-) =Y
Pearson residual R,-(P) = R,-(R) / "Eﬁ") el e ane
ar(RP
Standardized Pearson residual R©*") = R(R) /4 /2% )

(var(R®)) = 72Q; 1[I - QV2X(XTQX) X7 QY?); =
72Q:1(1 — P;;) evaluated at fi;)



. Introduction to
Residuals for GLMs (3) Gomaaoct et
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Analogon of i-th's contribution to deviance
Deviance residual R(” = sgn(R)/d;
with 7, d; = D
Model fit and
diagnostics

Standardized Deviance residual R,-(SD) = R,-(D)/(l —P;)

Preferred by many



Diagnostic Plots (1)

Analogous approach to linear model

Tukey-Anscombe

e.g., working residuals vs 7); or deviance residuals vs 7); or
fi

— there should be no structure (smoothing graph for
ease of interpretation)

Linear predictor

plot residuals vs covariates to identify additional relevant
covariates or transformation of covariates

Link function
e.g., linearized response (T) vs 1
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Diagnostic Plots (2)

Distribution F
overdispersion

Outliers, influential observations

Interpretation of diagnostic plots may be very difficult,
especially for binary data (— example later)
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Overdispersion
Larger var(Y;) than expected given F (1)

Canonical pdf
F(yi|mi, 72, wi) = exp (P20 Ay, 72, w;)

Dispersion parameter 72 = 1
for Bernoulli, Binomial, Poisson distribution

= var(¥;) = 12
Overdispersion

e.g., assuming var(Y;) =7
data

2 v(wi)

wij

, 72 > 1, estimated from

= quasi-distribution
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Assuming a quasi-distribution leads to maximum Myriam Riek

quasi-likelihood estimators of 3

Assumptions

- var(Y;) % ie.,
same relationship as for underlying 'parent’ F up to the

factor 72

Model fit and
diagnostics

- link function g
= same B and deviance as ML approach based on
'parent’ F and g
A P
= #2=_Ly1 (R (or -1-D)

= cov(/3) 1 and Cls 1 compared to ML approach
= approximate F-tests instead of LRTs



R Function glm()

glm(formula=response ~ x's, family=, offset=)

For binomial data, response is given as
cbind(# successes, # failures) with length n

Starting values must not be provided

— examples
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Binary Data

Artificial data
n = 100 observations of Y € {0,1}

with
exp (0.5x;)

Call: glm(y ~ x, family=binomial)

— R

T l+exp (0.5x;)
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Real data
n = 32 observations on the number of faults in rolls of
fabric
Possible model for p;:
pi = px length;, = #faults/unit length
n; = log p; = log p + log length, = By + offset; =2k

Call: glm(faults~ 1, offset=log(length), family=poisson)

— R



Summary and Outlook

Summary
Generalization of linear model to

- any distribution from exponential family of
distributions

- any suitable link between p; and 7;
— we can now deal with more than just normal data

Outlook

Inclusion of random effects
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