NonLinear Mixed-Effects Models &
Theory



Introduction

So far
* Linear Mixed-Effects Models for grouped data
* Nonlinear Regression in which where covariates are nonlinear in parameters

* What if, both situations are combined?

* i.e. grouped data with nonlinear expectation function (allow the reg ft to depend
nonlinearly on fixed and random effects)



Goal

e NLME Model
Two Examples
General Model

* Estimation for NLME Models
— Likelihood function
— Approximation Methods*** (Nonlinear)

* Computational Methods
* An Extended class of NonLinear Regression Model

— Extended Basic NLME
— Extended Nonlinear Regression Model



EX. 1 Indomethicin Knetics

* Data
-Six human Volunteers received (intravenous) Injections

— Six different Subjects

yii: Plasma Concentration of Indomethicin ( mcg/ml)
— Time: time at which the sample was drawn

* Interest
— Estimate the average behavior of an individual in the population
— FEstimate the variability among and within individuals



M Odel Ex.1 Indomethicin

Basically,
For Indomethicin data

compartment model ,expressed as a linear combination of (in this case
two)exponential terms, is considered

Yi; = ¢1exp [—exp () t;] + ¢z exp [— exp (¢y) ;] + €

@5 = log ¢o and @) = log ¢4
However,

1. Want to consider Subject Effects for each individual

And if then

2. Want to know in which coefficients Subject Effects should be considered
Observe the data First!!!



Observe the data Ex.1 Indomethicin
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TWO EXtreme MOde S Ex.1 Indomethicin

Boxplots of Residuals by subjects for Boxplots of Residuals by subjects for
a NLS a set of Six Individual NLSs
(without considering subjects) (without considering average)
Residual s.e, =0,1747 Residual s.e, =0,07555

Subject
Subject

T T T
06 -0.4 -0.2 oo 02 0.4 0B

T T
0o 0.1 0.2

There must be Subject Effects!!! ~ feaeesimeam
12.05.2010 But in which coefs? 7

Residuals




Subject effects, In which parameters?
Ex.1 Indomethicin

95% C.I. on model parameters for
each Individual

AZ Irc2
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4 —_
Parameters
1 ——t Pt
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Model with random effects

Ex.1 Indomethicin

 How are fixed &random effects incorporated in parameters?

 What do they explain for parameters?

Yij = [(51 + (f_ﬁli - (:’l)] exp {— exp [f;fz + ((ﬁ"’;i - ff;;)] f’j}

+ (@3 + (@3 — 63)] exp { —exp [¢) + (¢ — ¢4)] 15} + €45
, or equally in NLME version

yi; = (B1+ bii) exp [— exp (B2 + ba;) t5]
+ (If'));-] = bgi) exp [— exp (34 + 3)41')) ij] + €ij

’ ; Fixed effects representing the mean values of

.’5}1-. Hg 2 Iﬁg.. and I.d4 P &
P the parameters

Random effects representing the individual

b1i, b2i, b3i, and by; - ;
deviations , and being assumed ~N(0, W)
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F|na| MOdel Ex.1 Indomethicin

We found out there is no random effect for @4 i.e. No b

Yij = ¢1i exp [—exp (d3;) £5] + ¢35 exp [— exp (¢4 ) 5] + €ij,
6] L0 0 0][B] [1 O 0]
dail |0 1 0 0| [Bs i 01 0 !}1:*:
O3 100 1 0 .5?3 B 8 1 hz_.’?: 3
"(Jb-’-li’:_ ._U g @ 1 1L 34 ] ‘U 0 U_, 31
e : ¥ o ~ " b
tﬁ'” A.,'J' ]B B? i

b?' - J,quﬂ' 0, '1.-'.';1]_2 Uj,_,l'g n : 'F-f.j ~ _."\.I"F (n. Uz) ;
[ 0 0 933
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EX. 2 Growth of Soybean Plants

* Feature
— Showing Growth curve data
— Using covariates to explain between-group variability
* Data
— yi: average leaf weight per plant(g)
— Time: time the sample was taken
(Experimental Factors)
— Varieaty : Plant Introduction #416937(P), Forrest(F)
— Year: different planting years 1988, 1989, 1990

— For each category (Variety*Year=6), eight plots, fromwhich six plants were
averaged, were planted ™ 48 plots(subjects)

* Interest

— Possible relationship between the growth pattern of the Soybean Plants and
exprerimental factors Variety & Year



Observe the Data ex.2 soybean

20 60 20 60 20 60 20 B0
80Ple0PBe0PBI0Pha0RIa0Plaa0Ra0R
2 i We obeserve all
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" " |089P1D55P 330 090|990 (0907 330F [oa0F D30F[Ba0F All share similar S-
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Observe the Data ex.2 soybean

1988F1
1988F5
1988P4
1938F8
1988F7
1988P3
1988P2
1988F6

12.05.2010

Leaf weight/plant {g)

—— 1980F6  —— 1989P7
—— 1939F5 1939P4

1939F4 1989P6

1939F1  —— 1989P5
—— 1989F2  —— 1989P1
—— 1989F7  —— 1989P3
—— 1930F8  —— 1989P2
—— 1930F3  —— 1989P8

20 40 60 80
AN I I I I
P P P
1986 | 1989 | 1990

. N ': B

20 40 6080

20 40 60 80

Time since planting (days)

1990F 2
1990F3
1990F4
1990F5
1990F1
1990F8
1990F7
1990F6

Average leaf weight per two varieties vs
time, over three years

More interesting in Factor Effects (rather
than each plot)

Same overall S-shape
(nonlinear growth pattern)
But considerable variation among plots,
but more similar within the same Factor
levels.

-+ Significant Factor Effects, Variety
and Year, which is what we want to

see

Look at the model first!



MOdeI Ex.2 Soybean

Start with

— Accepting the fact that Nonlinear growth pattern is well discribed by
three-parameter logistic model s.t.

D1
1+ exp[— (tij — ¢2:) /P3i]

P B b
d; = | P2 | = |B2| + |[bai| =B+ b,
O3 33 b3i

btmN(O‘I’) EijNN(OjO'Q).

Yij = + €ij,

,whose parameters are ¢, = Asym, ¢o = xmid, and ¢3 = scal

@1: the asymptotic height(weight),
@2: the time at which the tree reaches half of ist asymptotic height(weight),

@3: the time elapsed between the tree reaching half and 1/{1+exp(-1)}~3% of its
asymptotic height(weight)

Notice that in this Nonlinear model the parameters have physical interpretations
Then there must be some relationship between Factors, which seem to effect on
12.05.2010 Weight, and Parameters, which describe growth pattern, ,



Subjectyoy Dependency for Parameters ex:

Soybean

95% C.I.s on the model parameters for

each individual

scal

Plot

Asym wmid

ﬁﬁ%}‘%%}ﬂ}f}f‘?{ﬁjﬂﬁg

T T T T T
-200 0 200 400 &0OD 50 100

T
150

All the three parameters vary with
individuals(subjects)

All the three parameters need random
effects

However, we are interested in the
relationships between growth
pattern and factors

To find it out we consider linear
modeling of parameters wrt
coveriates(Variety*Year)

—» Refer to next slide

,which will allow factor effects on
parameters to be incorporated in
fixed effect

—»Less needs of random effect terms

—»Most of between gp variation can be
explained by fixed effects



Parameters depend on Variety*Year!ex.2 soybean

Year T Wariety

Estimates of the random effets
Idea: incorporate them in fixed effects
using factors —» more interpretable

1950 P

1920 F

1939 P

1989 F [ *

1988 P

1938 F

Asgym

xmid

scal

haa X 24
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e

+4

* % e
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+H 8
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Random effects

-de-06 -Ze-08 Oe+00 2e-06

Observe that all three parameters vary
according to Variety or/and Year ,
which look linear

How are they related?

After linear fitting on three parameters
wrt factors, we obtain proper model
such as

Fixed-:
Asym~Variety*Year(interaction),
xmid~Year+ Variety, scal~Year

After incorporating most of factor
effects in fixed effects,

Random- : Asym varies with plots

.. Most of variations can be explained
by experimental factors ,which can
be incorporated in Fixed effects

16



F|na| MOdel Ex.2 Soybean

Ex. Model for 1990P
P1i
1+ exp|— (tij — ¢d2i) /D3l

Yij = + €ij,

P1i

\J

1

@D =
D =

iy
o =2

o=
o=

IE"-{ oM<

-
i
|
oD

=
|
|
L]

P3|
qﬁ\i_,l

b ~N(0,9), €l ~N (0502 [E(yfjifﬁ».e)]g) :

Generalize the model for NLME!!!
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N LME |\/|Od€| model fomulation

The model for the jth obs on ith group is
Yii = f(ﬁbfj,'ﬂ-;:j) + €ij, = gy F == Fown 030

Where M is the #of groups, ni is the # of obs on the ith group, f is a nonlinear,
differentiable ft of a group-specific parameter vector, which is modeled as

d)?—j — A?Jﬁ s B'.r'jb?:r b?: - _.""1.-""(0,. ‘I’:}

: . 2
and a covariate vector vy, and £;; ~ N(0,0°)



Estimation for Parameters 7. % and ¥y memode

* Idea
Use Likelihood function
Parallel to LME until some moment!!!
Likelihood function

-

L(B, 0, Aly) = p(y|B,0% A) =/ p(ylb, 8,07) p(b|A, o?)db

s
marginal density ofy conditional density of ygivenb

Noticel. Espress W in terms of relative precision factor A for simplicity s.t.
v =o2ATA o U=g4ATA)

Notice2. -
yilbi ~ N(fi(8,b:),0°I) and b; ~ N(0,0*(ATA)71)

***Derivation will be on the board!!!

12.05.2010 19



Estimation using Likelihood ft nivemode

e The likelihood ft, the marginal density of y, is

p(ylB,0° A) =
M M
'Al H/exp ly. = £, BB+ 1861
(Zﬂ'ﬂ'z +Mgq)/ : _20-

where [fi(B,b;) = f;[9,;(8,b;) ,v;]

* Notice that f is nonlinear in the random effects, so the integral is cannot be
calculated, which makes Optimization of Likelihood ft infeasible

« To make it tractable, three approximations to Likelihood ft are proposed

12.05.2010 20



Three Approximations to Likelihood ft nuve

Approximation of Likelihood Function in NLME

Three approximation methods are represented in the following:
1. LME Approximation (Alternating Algorithm)
2. Laplacian Approximation

3. Adaptive Gaussian Approximation

12.05.2010 21



1st Approximation for Likelihood ft :

LME Approximation
(of Alternating algorithm)

e Idea

approximate likelihood ft by the likelihood of a linear mixed-effects model

e Itis implemented in “nlme” ft in R

* The Alternating Estimation algorithm alternates two steps

1. Penalized Nonlinear Least Squares(PNLS)
2. Linear Mixed Effects(LME) ***




1st Approximation for Likelihood ft : Alternating algorithm

1st Step Penalized Nonlinear Least Squares, PN LSstep

Goal
For Fixed current estimate A, Estimate biand 8
e How? Penalized Nonlinear Least Squares
By minimizing objective ft i {Hy
Recall the goal :

~ £.(B.B)I + 1B ]

=1

p(y|B.0% A) =

A ly; — £: (B.0:) 1> + | Ab; |2
\(NEq)] H/P}‘p 5,2 db;,

(2mo2)

* Computation for optimization?
Make it simpler (psedo) and apply Gauss Newton
, which will come later

12.05.2010 23



1st Approximation for Likelihood ft : Alternating algorithm
1st Step PNLS

Penalized nonlinear Least Squares(PNLS)

We optimize objective function that is equal to

M
> Y = £i(8, b)) + | Abi]|]

=1

with Gauss-Newton method.

-

We will see soon how to apply it !
12.05.2010 24



1st Approximation for Likelihood ft : Alternating algorithm

2st step L M E

* Goal ,,that is where its name
Update the estimate of A LME. comes from !11¢
* Idea
Approximate loglikelihood whose form is identical to that of LME and use same
algorithm as in LME
* How?

Apply Taylor Expansion to fi(/%.b;) around current estimates of p and b: which
gives the identical form to that of a LME == Same way in LME

; »LME Approximation“

* Result?
Obtain the approximate log-likelihood ft to estimate A

* Plug in current optimal values for 5(A) mu‘l.r}z{,ﬂ} , ft of A. Then, work with
profiled log-likelihood of A — Optimize A



1st Approximation for Likelihood ft : Alternating algorithm

2st step LME, Recall the LME ***Derivation will be on the

board
i)  Plug in Taylor Expansion
Recall the LME ii) Make it
(approximately)linear
e the Likelihood ft in LME iii) Obtain Likelihood ft
L(B.6.0%y) = . (usmgTrgnsformann)
) , , iv) Calcultae optimal values of
T -2=14 / exp |~ (v = X8 — Zibil + |AbiI") /20| | "5, =% and Profile them on.
1 ey (2mo2)V/? t Esimate A!!!

* Reparametrization to describe the density as Normal

gy, = X:B+2Zb; +e=X,B+€, i=1,....M, Where € = Zibi + ¢

Sum of Two
so as to derive the Likelihood ft Indep.
MultiNormal
‘ 9y =5 f_XiﬁTEf_l i — X3 —2
P (yi- |;3,9,c:r"3) = (Zﬂ'cr‘:) 2 exp ((y ) —503 Y ) 132;| 2

where 2, =1+ 2Z,9Z] /o2

 Now, obtain optimal values for 3. -2, and then derive profiled likelihood
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1st Approximation for Likelihood ft : Alternating algorithm
2st step LME

* The approximate log-likelihood ft
M

bive (B,0°,A |y) = —— log (270?) — = Z {log |2;(A)]

g="1

T
+o72 [“':‘”J X" ;3} =;7H(A) [i“u?‘”—ﬂ“”@}

5i(A) = I+2™Aa-1a-TZ™" | ***Derivation will be on the

, Where ' board
i)  Plug in Taylor Expansion
ii) Make it

(approximately)linear
iii) Obtain Likelihood ft
(usingTransformation)
iv) Calcultae optimal values of
3, o2 and Profile them on.
Esimate A!!!
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2st Approximation for Likelihood ft

Laplacian Approximation

How
* Use Laplacian approximation to approximate likelihood ft

Idea

* i) Apply second order of Taylor expansien to obejective ft
ly; — £,(8,b:)||> + || Ab;||* around b;
Then integration will be done with Gaussian density
* ii)Modification for simpler calculation
* Approximate Hessian bydropping negligible term

Result

* i) Use profiled modified likelihood ft to get MLE

i) profile /1o on o“to reduce the dim of optimization problem
— ftof 3. A



2st Approximation for Likelihood ft : Laplacian Approximation

***Perivation will be on the board

Recall the objective ft (Likelihood ft)

p(y|B.0% A) =

|a|” ly, — £, (B, )1 + | Ab;|*
(NTMq)/2 H/ﬁ‘p 952 jdb’-‘*

Set 9(8,A,y:,b;) = |ly, — £,(8.b;)|>+| Ab;|*

(2o

And let b =5 (8,4,y,) =agming(3, A,y;,by).

/ ! = &g(ﬁ‘&'*y?'-br}
g (ﬁ‘ &'-' 'yi ? b?} - l‘f}b? .
H 02@(;8~A~y~br)
A, ,l.-,b?' = - 2 1
g (8,4, y,,bi) 3007

A second order of Taylor expansion of g around b gives Laplacian
approximation defined as
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2st Approximation for Likelihood ft : Laplacian Approximation

The Laplacian Approximation

Furthermore,the modified Laplacian approximation to the log-likelihood

lea (B,0%, A, | y) = ﬁ% log (2m0?) + M log | A
1 M M R
=5 {Zlog G (B, A y)+072) g (6, A, yi:bi)}
=1 =1

by approximation Hessian (by dropping second derivatives of f)

— Easier to Compute!

12.05.2010 30



3rd Approximation for Likelihood ft :

Adaptive Gaussian Approximation

Goal
Improve Laplacian Apporximation
(modified Laplacian approximation is the simplest case of Gaussian Approximation)

Idea
Use Gaussian quadrature rule
Gaussian Quadrature Rule?

— It is used to approximate integrals of fts by a weighted average of the
integrand evaluated at predetermined abscissas

How?

Apply Gaussian quadrature rule to Laplacian Approximation



3rd Approximation for Likelihood ft : Adaptive Gaussian Approximation

Adaptive Gaussian Approximation

To improve Laplacian approximation Gaussian quadrature rules are
used, which approximates integrals of functions by a weighted
average of the integral evaluated predetermined abscisses such that

1 n
/ F()de =3 wi (x)
bl i=1

12.05.2010 32



Alternating agorinm VS Laplacian approximation

* (+)Laplacian approximation generally gives more accurate estimates than
the alternating algorithm

reason : it uses an expansion around estimated random effect only, while
LME approximation in the alternating algorithm uses an expansion around
both of the estimated fixed and random effects

* (-) Laplacian approximation is computationally intensive than the
alternating algorithm

reason : it requires solving a different penalized nonlinear least square
problem for each group in the data, and its objective function cannot be
profiled on the G(profiled log-likelihood is still ft of 5 and A)

9B, A, y;,b:) = |ly; — F.(B,b:)| >+ Ab; |

12.05.2010 33



Computational Method

for Alternating Approximation on PN LS step to find optimal values of 3 and b:

Computational Methods for Estimating Parameters

For this nonlinear square problem, we use Gaussian-Newton
optimization. Replacing nonlinear f into Taylor approximation
around current estimates gives Least-Squares problem.

D [IY: = 58, 5) I + 1 Abi|] an - — 2" b2

12.05.2010 34



Computational Method
for Alternating Approximation on PNLS step

e Focus on Alternating algorithm

i) PNLS step
ii) LME Step : same as the LME case

e Situation (Recall!)

Want to find optimal values of 3 and bi minimizing Penalized Sum of Square
M

S [lwi = £:8, 601 + | Abi?]

i=1

« How? **
i) Simplify the objective ft by adding Pseudo data
—» standard Nonlinear Least-Squares problem (common method? GN)
ii) Apply Gauss-Newton (Recall!)



Computational Method
for Alternating Approximation on PNLS step

* i) Simplify the objective ft by adding Pseudo observation

Penalized NonLinear Sum of Squares

M

Y- [lwi = £B.bo)I + | Ab 7|

=1

Y, =

—

fz’ (ﬁ*bﬁ) —

poy

a standard Nonlinear Least-Squares
M

> Mg — £.(8, )|

i=1

—» Apply Gauss-Newton Method (Recall!)

12.05.2010
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Computational Method

Alternating Approximation on PNLS step , recall GaUSS' N EWtO n

M

S 19 - Fi(8, 001

2=1

We want to solve

To solve Nonlinear Least-Squares problems
i) Replace the ft by a first-order Taylor series approximation about current

estimates
1i - - (w d ~(w ’
ii) Solve Least-Squares problem H [,y @ .))} B aa{" (a Al ,>)
&)
So that the soln is the prameter increments 5! _ 4 (w+1) _ 5(w)
. . omf(w) |, plwtl) . .
Then the new estimate is &'"'+4 , and we can obtain the value of the obj.ft

iv) Iterate algorithm checking Step-halving at each step

*** Step-halving : to ensure that updated estimate results in a decrease of the
objective ft

If no decrease ? Halve the increment and iterate this halving process until the

estimate gives decreases value of objective ft cf. &'’ +45 /2

Go back to Our PNLS problem!
37
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Computational Method
Alternating Approximation on PNLS step

M

> g = F:(8, )|

o (3] 5 (5 ) o)

Want to solve

M

By Taylor expansion }°

=1
.. . of. (8,b;|A - (w < {w)
,where derivative matrices are &T'—) x| X ],
aB 30 B0 0
a.;c«.r; (B, b:|A) _ Z(ﬂf) _ EEW)
8b;r a(u,) B( ) ¢ A .

2

_ ~ (w)
where ’ib_gu’) = lw"@ ]

i - (w) ~ (w)
> e - %8 - 2%,
1

Find optimal new estimates of 3 and bi. And calculate increment! (difference
between new estimates and current estimates)

Check if it meets Step-halving rule!
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What if, variant &correlated € ?
(Relax the Assumptions... ) Extending the Basic NLME

* Want to consider more general case
* Relax the assumption that within group error &; are indepedent A (0,0°I) random
vectors

Allow them to be
' heteroscedastic (having unequal variance) and/or correlated

Consider two models

1. Extended NLME Model
2. Extended Nonlinear Regression Model

12.05.2010 39



What if, variant &correlated € ?
(Relax the Assumptions... ) 1.Extended NLME

Extended NLME Model

For general case we extend the basic NLME. We allow the
within-group errors =; to be heteroscedastic or/and correlated. So
our model is given by

Y; = fi(oi,vi) + &
(f:’j :A,'.B—FB;b;, b,‘ NN(U,w) and £ NN(U,G’ZA)

12.05.2010 40



What if, variant &correlated € ?

(Relax the Assumptions... ) 1. Extended NLME : EStl matIOI‘I

* Estimation by Transformation

* T2
Yy, = A?: / Y,
* —T/2
Fi(Pivi) = A7 f (@5 vi)
e =A; e,

* Transformed model can be described by basic NLME

y; = [ (&, vi) + €,
¢, = A;B+ B;b;,
b, ~N(0,¥), e ~N(0,0°I)
* Notice that

e~ N [A;T/QO,JQA;TQA?;A;UQ] =N (0,0%I)

A, =ATPA? and AT'=A

~1/2 5 ~T/2

z k3

12.05.2010
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What if, variant &correlated € ?

(Relax the Assumptions... ) 1. Extended NLME : EStl matIOI‘I

* The log-likelihood ft for extended NLME

T/2, .

. s == P _1f2
since ¥r = A, Ty, and so dy; = |A;] dy;

Both are density
ft, which integral
tol

M
* (8,07 A NY) =) logp (y;18,0°, A A
=1

M
= glogp (yi18,0%, A, X) = 5 ;103‘ A

M

‘ 1

2 *Y|_ < :
=1 (B,0% A, Aly) G ;:1 log |A;].

Same approximations as those of Basic NLME can be applied to approximate

(B,0% A Ay")
1. Alternating Algorithm

2. Laplacian and Adaptive Gaussian Approximations

12.05.2010 4?2



What if, variant &correlated € ?

(Relax the Assumptions... ) 2.Extended Nonlinear Regression: MOdEI

Extended nonlinear Regression Model

Make Situatin more Simpler!

No Random Effect!

Let all Variations be explained only through ,, €“ structure!
—» Simplfied Version of Extended NLME!

The Extended nonlinear Regression Model is given by

Yi = fi(oi.vi) + €
= A,j and E: NN(O,U’ZA,')

12.05.2010 43



What if, variant &correlated € ?
(Relax the Assumptions... ) 2.Extended Nonlinear Regression:

Estimation &Inference

* Assuming that Ai matrices are known,
It is referred to as the generalized nonlinear least-squares(GNLS) model

» Using the same transformation as Extended NLME case(cf. slide# 41),

modelis 7 = f; (¢, vi) + €
o, =A;0B, € ~ Mixed B and A

 Find MLE using log-likelihood ft

_ e
=1

M * _ ¥ )
((B.0%Aly) = —% {N log (2mo®) + Z [”y' ff Gl +log |A;]

}

e Profile it on 62 ——» MLE of 5 and A
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Thanks for your attention!
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