
In the previous talks we have seen many definitions, algorithms,theorie about linear Mixed Models.  

Today in my talk we will see how to  solve a problem systematically.   

Overview of the talk 5 
• Problem and Motivation   

• Model-Building Strategies   

• Two Examples 

1. Two-Level Models for Clustered Data : The Rat Pup Example   

2. Random Coefficient Models for Longitudinal Data:The Autism Example  

 

Problem and Motivation 

What  is important in an application of LMM ? 

� Dependent Variable: is actually the objective of our research, which is dependent on 

continuous or categorical covarates. 

� Covariates: as fixed-effect parameters and random-effect parameters. fixed-effect 

parameters describe the relationships for an entire population, random effects are 

specific to clusters or subjects within a population, used in modeling the random 

variation at different levels of the data. 

� The relationships between a continuous dependent variable and various predictor 

variables  

  

 Model-Building Strategies 

The Goal of model selection is to choose the simplest model that best fit to the observed 

data. There are many possible choices.  The top-down strategy will be used in our examples. 

The Top-Down Strategy   

1. Start with a well-specified mean structure for the model:Adding the fixed effects of 

covariates and interactions between the covariates, as many as possible . 

2. Select a structure for the random effects in the model:Usually we choose some of the 

convarates in step 1. as random effects to include in the model. 

3. Select a covariance structure for the residuals in the model:Once fixed effects and 

random effects have been added, we have residual error. An covariance structure for the 

residuals should be investigated 

4. Reduce the model 

The Rat Pup Study 

30 female rats were separated into three groups, 10 rats each group, where they were 

treated with three different doses of an experimental compound (low, high, control dose). Then the 

weights and the sexes of their newborn pups were measured. 3 of the female rats in the high-dose 

group died, so there are no data for their litters.  

This is an example of a two-level clustered data set,  level 1 is about units of analysis (rat 

pups),Level 2 is about cluster ( litter). The weights of the pups of the same litter are likely to be close 

to each other, because the mother of all the pups of a certain litter was exposed to the same 

environment and effects.  

 



Data Summary 

In addition, litter sizes varied widely, ranging from 2 to 18 pups. Because the number of 

litters per treatment and the number of pups per litter were unequal, the study has an unbalanced 

design. 

 

Analysis Steps 

Step 1: Fit a model with a “loaded” mean structure (Model 3.1). 
  Model 3.1 includes the fixed effects of treatment, sex, litter size, and the interaction between treatment 
and sex. The model also includes a random effect associated with the intercept for each litter and a residual 
associated with each birth weight observation. The residuals are assumed to be independent and identically 
distributed, with constant variance across the levels of treatment and sex. 
 

Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A). 
  Model 3.1 A : by omitted the random litter effects from  Model 3.1 (Hypothesis 3.1). Based on the 

result of this test,we decide to retain the random litter effects in all subsequent models. 
  

Step 3: Select a covariance structure for the residuals (Model 3.1, Model 3.2A, or Model 3.2B). 

Model 3.1: we take a homogeneous residual for all treatment groups.                                                              
Model 3.2A: we take a heterogeneous residual for each level of treatment(high, low, and control).                
Model 3.2B, we take a common residual variance for the high and low treatment groups, and a different residual 
variance for the control group. 

Step 4: Reduce the model (Model 3.2B, Model 3.3, or Model 3.3A).            

We first test whether we wish to keep the treatment by sex interaction in Model 3.2B 

Hypothesis Tests and Results 

• Hypothesis 3.1: The random effects,associated with the litter-specific intercepts can be omitted 

from Model 3.1. 

• Hypothesis 3.2: The variance of the residuals is the same (homogeneous) for the three treatment 

groups (high,low, and control). 

• Hypothesis 3.3: The residual variances for the high and low treatment groups are equal. 

• Hypothesis 3.4: The residual variance for the combined high/low treatment group is equal to the 

residual variance for the control group. 

• Hypothesis 3.5: The fixed effects associated with the treatment by sex interaction are equal to zero 

in Model 3.2B. 

Hypothesis 3.6: The fixed effects associated with treatment are equal to zero in Model 3.3. 

 

Random Coefficient Models for Longitudinal Data    

 we mean data sets in which the dependent variable is measured at several points in time for 

each unit of analysis.In another words: the observations are made on the same subject or unit of 

analysis over time. In our Autism Research example, Socialization score will be measured at some 

different ages  

The Autism Example 

 214 children, who had been at autism clinics several times before the age of 3 years, were 

divided into three groups according to their language skills at the age of 2 years (autism, PDD, 



nonspectrum). The children were then scored according to their VSAE (Vineland Socialization Age 

Equivalent ,including assessment of interpersonal relationships, play, coping skills) at the ages of 2, 3, 

5, 9 and 13 years.  

The data shows that mean VSAE scores generally increase with age. There may also be a 

quadratic trend in VSAE scores. Therefore a model to predict VSAE should include both linear and 

quadratic fixed effects of age and interactions between the both of them and the three groups.  

Data Summary in R and Result of Data Summary 

Figure 6.1:the VSAE scores of some children tend to increase as the children get older, for 

otherchildren remain relatively constant. At age 2 years ,we do not see much variability in the initial 

values of VSAE at age 2 years for any of the levels of the SICD group. Overall, 

Figure 6.2:The mean VSAE scores generally increase with age. There may also be a quadratic 

trend in VSAE scores, especially in group two. This suggests that a model to predict VSAE should 

include both linear and quadratic fixed effects of age, and possibly interactions between the linear 

and quadratic effects of age and SICD group. 

General Model Specification 

We consider SICDEGP = 3 as the “reference category.”  When all covariates,including AGE_2, 

are equal to zero, the intercept can be interpreted as the VSAE score for children in the reference 

category of the SICD group (SICDEGP = 3).  

Overview of the Autism Data Analysis  

Hypothesis Tests 

 Analysis Steps in R 

Step1: estimates of the parameters in Model 6.1 cannot be obtained using the summary()function.  

As a result, the model6.1.fit object is not created, and  we proceed to consider Model 6.2 as an 

alternative.  

Step2: Results from the fit of Model 6.2 are accessible using summary(model6.2.fit). we fit a nested 

model (Model 6.2A) by removing AGE_2SQ  (specifically,    I(age.2^2)) from the random portion of 

the syntax 

Step3:  Based on the p-value for the test of Hypothesis 6.2 (p = .39), we drop the fixed effects 

associated with interaction and obtain Model 6.3. An additional likelihood ratio test for the fixed 

effects associated with the age by SICD group interaction (i.e., Hypothesis 6.3) does not suggest that 

these tested fixed   

 

Results of Hyothesis Tests 

We test Hypothesis 6.1 The significant (p < .001) means that the random effects associated with the 

quadratic (and therefore linear) effects of age should be retained in Model 6.2 and in all subsequent 

models. 

 

 We test Hypothesis 6.2 using an ML-based likelihood ratio test. The test statistic is the value of the 2 

ML log-likelihood for Model 6.3 (the nested model excluding the fixed effects associated with the 

interaction) minus the value for Model 6.2 (the reference model).To obtain a p-value for this statistic, 



we refer it to a distribution with 2 degrees of freedom, corresponding to the 2 additional fixed-effect 

parameters in Model 6.2. 

We test Hypothesis 6.3 using an ML-based likelihood ratio test. The test statistic is the 

value of the 2 ML log-likelihood for Model 6.4 (the nested model excluding the fixed 

effects associated with the interaction) minus the value for Model 6.3 (the reference model). 

To obtain a p-value for this statistic, we refer it to a 2 distribution with 2 degrees of 

freedom, corresponding to the 2 additional fixed-effect parameters in Model 6.3. so we kept 

the 

  

Diagnostics for the Final Model 

 Residual Diagnostics  

Figure 6.6 The variance of the residuals appears to decrease for larger fitted values, and there are some possible 
outliers that may warrant further investigation. The preceding syntax may 

Figure 6.7 suggests that the variance of the residuals is fairly constant across the values of AGE χ 2. We again 
note the presence of outliers. 
 
Figure 6.8 suggests that the assumption of normality for the residuals seems acceptable. However, the presence 
of outliers in each level of SICDEGP (e.g., CHILDID = 46 in SICDEGP = 3) may warrant further investigation. 

• Diagnostics for the Random Effects 

Figure 6.9 We note that CHILDID = 124 is an outlier in terms of both random effects. The children 
indicated as outliers in these plots should be investigated in more detail to make sure that there is nothing 
unusual about their observations.The form of these plots is not suggestive of a very strong relationship between 
the random effects for age and age-squared 

• Observed and Predicted Values 
The distinguishing features of these plots are the outliers, which give the overall shape of the plots a rather 
unusual appearance. The EBLUPs for CHILDID = 124 are again unusual in Figure 6.10. 
 
Figure 6.11 displays scatterplots of the observed VSAE scores vs. the conditional predicted VSAE scores for 
each level of SICDEGP. We see relatively good agreement between the observed and predicted values within 
each SICDEGP group, with the exception of some outliers. 
  

 

 


