2" Talk

The Linear Mixed-Effects Probability Model



So far:

e Micro Introduction

« Examples of different models and datasets

In this talk:

e Formalize notation
* [Introduce new definitions

» Model fitting (as done in the /me4-package)



Recall a basic example of a model
(workers and machines)

Model:
}r-ijk‘ = f”' —|— jj —|— g}-i —|— F'ijk* 1= J_ G
7; : etfect of machine (tixed)
b;: effect of worker (random)
Assumption:

bi ~ N(0,0) e ~ N(0,0?)



Generalization:

Two random variables:

V: the n-dimensional response vector
B: the ¢-dimensional vector of random effects

B~ _x'\"'r [ 0.X 9) .

(VIB=b)~N(Zb+ X3,0°I,)

So the linear predictor 1s

Zb+ X3

With the model matrices Z of dimension n x ¢

and X of dimension n x p,

where p 1s the dimension of the fized-effects parameter vector 3



More definitions:

6 : variance-component parameter vector
dlg . vartance-covariance matrix
o . common scale parameter

The form of the random-effects model matrix, Z, and the form of the
arlance-covariance matrix, 2, and the method by which 334 1s determined
from the value of @ are all based on the random-effects terms 1n the model
formula.

Z can be large, but it is sparse (1.e. most elements in the matrix are zero).
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More definitions:
Ag: relative covariance factor, defined so that
Yo = 07 AgAy

2

where o< is the same variance parameter as in (Y |B = b).

With the spherical random effects:

U~ N(0,o? 1)
we get:

B = Agld

So we really have:

E[B] = AgE[U] = Agh =0



and:

Var(B) = E[(B — E[B])(B — E[B])T] = E[BB]
= E[AUUTAT] = AgEUUTIAT = AgVar(U)AT

— AQJQIQAE — D’QAQAT — Eg



In our discussion we will concentrate on Ay (not 3p) and U (not B):

So we look at:
U~ N(0,0%1,).

VU=u)~N (ZAgu + X3, gQIn)

=



So the linear predictor becomes:

v=ZNpu+ X3

And the conditional mean of ), given U = w:

p=E

U = ul

Note: For a linear mixed model, we obviously have p = ~.

In other forms of mixed models this may not be the case anymore.



Conditional Distribution:

Notation:

Uops © anl observed data vector (an actual realization of Y)

y : an arbitrary value of Y

Now we are mnterested in the conditional distribution of (U4|Y = y)

Our model parameters are 6, 3 and o.

The lLikelihood gf those parameters, given the observed data, y.,s. 1s the
probability density of ). evaluated at yp..

T

Parameters fixed, y varying y fixed aty , parameters varying



Natural approach for evaluating the likelihood:

1. Determine marginal distribution of )

* Determine jomnt density of ¢ and YV: fyu(y.uw)

« Integrate this density wrt. w to get the marginal density: fy(y)

2. Evaluate that density at y.ps.

But here we choose a different order of the steps, that 1s:

Evaluate the joint density at y,ps to produce an intermediate function ().
And then integrate this function fi(w) along .
This does not work generally, 1t could even happen that the joint density does

not exist (think of a jomnt distribution that is discrete wrt. y and continous
wrt. u)



We define:

h.-('n!!-) — ](:‘,L?_,M(yobsr ’IL)

the unnormalized conditional density.

We see that:

I —_C)
Juy\W|Yobs) = qu h.(u) T
and thus the likelihood 1s:
L(6.3.0|Yuws) = Tyt Yops. ) du :/ hiuw)duw.
Ra R4

(10)

(11)



Tools to evaluate the likelithood in general situations:

u : the conditional mode of w. given V = y.ps:

U = arg 111a-1:{ﬁ_:,f|y(u\yﬂb5) = arg max h(w) = arg max [y Yobs
u u u ‘

w) fu(w)
(12)




Recall (4) and (5):

U~ N(0.0%1,).

(VU =u) ~ N (ZAou+ XB.0°1,)

Thus we have:

fyuylu) =

Julu) =

exp(—gzlly — XB — ZAgu|)

(*‘ ?l—qﬁ)ufﬁ

f_?K]Z}(—%EHHHQJ
o (2mor2)4/2

(14)



And so the product:

i-‘KI)(— [Hyabs T XJB o ZAQ HHQ _I_ HHHQ] I'I(erg))

L e
h(uJ o (Qﬂnﬁj(?1+t1};“’2 (LJJ

Looking at the negative log density, we get:
oo e o Ve — X B = ZAsu|? + |ul)*
—2log(h(w)) = (n + ¢) log(270?) + o B o ul|” + [lul (16)

(}_2



So we get:
@ = argmin ||y — X8 — ZAp u|]* + ||u|? (17)
72

‘ T

penalty for high complexity

sum of squared residuals

The expression to be minimized ||yos — X B — ZAguw|? + ||u|* is called
the objective function, here it is a penalized residual sum of squares (PRSS).

The minimizer w 1s called the penalized least squares (PLS) solution



We think of the PRSS criterion as a function of the parameters. given the
data. 1e.:

vy = min [lyp, — X8 — ZNg w| + ||ul*] (18)

We can also minimize this expression wrt /7.
And we will see that this can even be done simultaniously wrt w and
without using iterations. The minimum value we get 1s:

vy = min [[|yons — X B = ZAo ul* + u’] (19)

. conditional estimate of 7

the value of 3 for which the minimum in (19) is attained.



One way to determine the solution is to rephrase 1t as a linear least squares
problem for an extended residual vector

2

. . bs — X Z Ay |

w = arg min Yobs Pl ) (20)
ou 0 Iq

This 1s called a pseudo-data approach because we create the effect of the

penalty term, |lul|?. by adding “pseudo-observations” to the response vector

and to the predictor (adding zeros and I,u).

For this linear least squares problem. we can give the solution by solving the
normal equations. So we get that the solution satisfies:

(AL ZTZNg+ L) = AL Z7 (yop — X B) (21)



We want fast evaluation of w for different immputs, so we form the sparse
Cholesky fatcor, Lg.
It 1s a lower ¢ x ¢ matrix with:

T _ (AT 7T :
LoLy = (NyZ" ZNp+ 1)) (22)
In order to get a sparse Cholesky factor Ly we might want to permutate
the columns of our data.

‘This 1s done through a so-called Permutation matriz P.

We also call them fill-reducing permutations as we want to avoid positions in
the factor getting filled, where the matrix being decomposed 1s zero.

(22) thus becomes:

LyLl = P(N!ZTZAy + 1) PT (23)



The pseudo-data representation m (20) becomes:

' _ - T
[ymbs 0 -X;d] . [ZAHP ] Pu

w = arg min
i

And the system of linear equations for w accordingly:

LoL}Pu= P(A) Z" (yo. — XB))P ' Pu=PAy Z" (ys — XB)  (25)

Note: Once we evaluate Ly it 1s straight forward to solve (25) for w.
Thus this step 1s very crucial, and the ability to evaluate Ly rapidly for many
different values of € 1s what makes the methods in 1me4 feasible.



Back to the evaluation of the likelihoood:

We've seen in (11) and (15) that:

L(8,3.0|Yuws) = Tyt Yops. u) du :/ hiw) duw.
R4 R4

{.‘K[:}(_ [Hyabs — Xﬁ — ZAEJ H’HQ + HH’HQ] I'I(Q{TQ))

h[u] - (zﬂ(f?)[n—l—t}}fﬁ

We can now write the PRSS for general w as:

yobs — X B — ZAgu|* + [Jul* = 155+ || Lg (u — w)||”

(26)

Plugging this into the definition of 2(w) and using the change-of-variable:

B Li(u—u)

A

o

(27)



We get after a calculation (Bates|10], ch. 5.4.2 - available on http://lme4.r-
forge.r-project.org/book/):
exp(—o25)

So the deviance (negative twice the log-likelihood) becomes:

..',,2
d(0. B.0|Yops) = —210g(L(0. B.0|yoss)) = nlog(2m0?) + —L2 + 210g(| Le[?)

o2

So the maximum-likelihood estimates for the parameters are those that
minimize this deviance.



We can even further simphfy this expression by using the facts, that

only occurs in -r'g, 3 and minimizing this expression wrt 7 for any value of 6

coes back to the penalized least square problems.
So let Jy be the value of 7 that minimizes PRSS wrt to 4 and w.
And rZ the PRSS at these minimizing values.

Furthermore let dp° = 72 /n. the value of ¢ that minimizes the above de-

viance or a given -rg.

Then the profiled deviance, which 1s now only a function of #, becomes:

Q?T'.f'g

;'E(9|yobs) = 2log |Lg| + n |1 + log
n



Now minimization of d(f|y.s) wrt 8 determines the MLE, 6.
The MLEs for 7 and ¢ then are the corresponding conditional estimates
evaluated at 0.



Simultaniously evaluating w and Jy uses the same approach we've already
scen in (20), that is to rephrase the PLS problem into a linear least square
problem.

Thus we rewrite:

2
S — aro 1 Yobs _Xﬁ ZAS A
w = arg min [ 0 ] — [ 1, ] U (20)
as
i y ZAyPT X [Pu]]]
oo s obs | f ;
HEE - A 29




Which now vyields the equation:

P(AYZTZAy+1,)PT PAE;ZTX] [Pﬂ] B [PAg"ZTyDE,S]

XTZA,PT XTXx 3, XTy,,.

The Matrix on the LHS can be decomposed into a “Cholesky-like’ decom-
position.



This way we also found a fast way to get w and Gy, thus we have found all
MLE estimators of the parameters.

That 1s we fitted the model to the actual data.

Outlook: Complete Analysis of several data examples
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