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Linear regression model:

yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + εi , (i = 1, . . . , n observations)

= β0 +

p∑
j=1

βjxij + εi (p parameters)

= xT
i β + εi , with εi ∼ N〈 0, σ2 〉

or in matrix notation:

y = X × β + ε
(n × 1) (n × p) (p × 1) (n × 1)



R-output of a simple linear regression model (intercept and one
covariate x1):

Call:

lm(formula = y1 ~ x1, data = anscombe)

Residuals:

Min 1Q Median 3Q Max

-1.92127 -0.45577 -0.04136 0.70941 1.83882

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0001 1.1247 2.667 0.02573 *

x1 0.5001 0.1179 4.241 0.00217 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.237 on 9 degrees of freedom

Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295

F-statistic: 17.99 on 1 and 9 DF, p-value: 0.002170
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Figure: Plot of 11 data points and a corresponding fit of a linear
regression model according to y = β0 + β1x + ε (data from anscombe).



Analysis of Variance (ANOVA) model for two (crossed) factors:

yijk = µ+ βi1 + βj2 + εijk

with:

µ population mean

βi1 main effect of factor level βi1

βj2 main effect of factor level βj2

εijk ∼ N〈 0, σ2 〉 (error term)



R-output of a ANOVA model:

Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

Rater 2 3048.78 1524.39 50.3505 2.072e-11 ***

Manager 19 51.55 2.71 0.0896 1

Residuals 38 1150.47 30.28

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Classical Analysis of Variance (ANOVA)

I Classical ANOVA developed for agricultural experiments
I Control over

I crop varieties
I type of fertilizers used
I amount of fertilizer
I plots, subplots
I greenhouse: light, irrigation, soil type, etc.

I Need for randomization in order to avoid confounding

I Different designs



Classical ANOVA: Randomization

Figure: Fisher, Ronald A ; Yates, Frank: Statistical Tables for
Biological, Agricultural and Medical Research. 6th edition, revised and
enlarged. Edinburgh/London: Oliver and Boyd, 1963, p. 25.



Classical ANOVA: Randomization

Figure: Fisher, Ronald A ; Yates, Frank: Statistical Tables for
Biological, Agricultural and Medical Research. 6th edition, revised and
enlarged. Edinburgh/London: Oliver and Boyd, 1963, p. 28.



Experimental Design: Crossed vs. Nested

I Two factors are said to be crossed if all levels of the first factor
appear in combination with all levels of the other factor.

I A crossed design is also called factorial.

I Example: five enzymes are tested in two solutions with different pH
(four measurements each).



Experimental Design: Crossed vs. Nested

I A factors is said to be nested under (or within) another factor if any given
level of the nested factor appears at only one level of the nesting factor.

I Rationale: either given by the experiment (sample from a batch) or to
avoid disproportional complexity (three raters evaluate ten managers each
[30 interviews instead of 90]).

I A nested design is also called hierarchical.

I Example: From five production batches two samples are taken for quality
control (four measurements each).



Interaction

If the effect of one covariate changes considerably as the value of
another covariate changes.



Interaction

The resulting effect is no longer additive and has to be modelled
separately:

yijk = µ+ βi1 + βj2 + βij3 + εijk

with:

µ population mean

βi1 main effect of factor level βi1

βj2 main effect of factor level βj2

βij3 interaction term βi1 × βj2



Fixed vs. Random Effects

I So far, covariates were considered fixed.

I Levels were chosen deliberately

I Levels had a specific meaning

I Changing levels leads to fundamental changes in the
experiment

Examples:

1. Different crop varieties (oat; oat and rye; oat, rye, barley)

2. Medical test on humans (males; males and females)

3. Life expectancy (german speaking countries; german and french; german,
french, italian)



Fixed vs. Random Effects

Random effects take into account that there is further variation:

I subjects tested

I batches or units sampled

I plots used to grow crops

The last example shows the shift in interest: plots can be defined
as fixed, then the analysis provides information on the specific
plots used.

Or plots are defined as random, considering them as arbitrary
source of variability without further significance for the experiment.



Random Effects

Random effects

I assess variability

I reduce threats to validity

I increase generalizability

Random effects allow to generalize

I the results: schools in Markus’ nano-introduction

I the research question: can a research method be used
“universally”?



Random Effects

When should a factor be considered random?

I Specific levels could be replaced by other levels (e.g.
subjects): the chosen levels are arbitrary or substitutable

I The conclusion of the experiment is to be generalized (e.g.
other schools)

I Conclusions drawn for each separate level are not of interest:
not the specific items are important but the population they
are drawn from



Model

Linear mixed-effects model for one fixed and one random factor:

yij = µ+ βj + bi + εij

or in matrix notation:

yi = Xiβ + Zibi + εi

with:

µ population mean

βj fixed effect, j = 1, . . . , ni (levels of the fixed factor)

bi random effect, i = 1, . . . ,M (subjects, batches, etc.)

bi ∼ N〈 0, σ2
b 〉 (“between-variability”)

εij ∼ N〈 0, σ2 〉 (error term or “within-variability”)

bi ⊥ εij



Software

The new variance term σ2
b needs to be estimated numerically,

implemented differently in software packages:

R: lme() from package nlme (Pinheiro/Bates 2000)
lmer() from package lme4 (Bates 2010)

SAS: PROC GLM, NESTED, ANOVA or VARCOMP

SPSS: MIXED



A first example: the Rail dataset

Example for a simple “one factor design” or “one-way classification”.
The datset is included in the package nlme (R: data(Rail)).

Data:

rail 6 levels (six rails chosen at random)

travel 3 measurements per rail of travel time of a ultrasonic wave

Interest:

1. Average travel time of an ultrasonic sound wave in a rail (=
expected travel time)

2. Variation in travel time among rails (= between-rail variability, σ̂2
b)

3. Variation in the three measurements of travel time for a single rail
(= within-rail variability, σ̂2)



A first example: the Rail dataset

Zero−force travel time (nanoseconds)
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Figure: Plot of the 6× 3 data points, grouped by Rail (lines) in ascending
order of the mean travel time per rail. The three measurements are depicted as
dots. Overall the between-rail variability is much larger than the within-rail
variability.



A first example: the rail dataset

Model:
yij = µ+ bi + εij

with yij response variable: travel time of rail i at j th measurement

µ mean travel time across all 6 rails (= estimate of the
population mean of all rails) (fixed effect)

bi random effect of rail i (= deviation from µ)

εij error term

Assumptions:

1. bi ∼ N〈 0, σ2
b 〉 (“between-rail variability”)

2. εij ∼ N〈 0, σ2 〉 (error term or “within-rail variability”)

3. bi ⊥ εij



A first example: the Rail dataset

Implementation in R:

lme(fixed= travel ~ 1, random = ~ 1 | Rail, data=Rail)

or

lmer(travel ~ 1 + (1|Rail), data=Rail)

Both calls model a single fixed effect for all rails (= intercept or µ or

estimate of the population mean), and a random effect for each rail

(grouping variable is Rail).



A first example: the Rail dataset

Output (lmer):

Linear mixed model fit by REML

Formula: travel ~ 1 + (1 | Rail)

Data: rail

REML

122.2

Random effects:

Groups Name Variance Std.Dev.

Rail (Intercept) 615.311 24.8055

Residual 16.167 4.0208

Number of obs: 18, groups: Rail, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 66.50 10.17 6.538

where µ̂ = (Intercept): 66.50

σ̂b = Rail: 24.8055 (between-rail variability)

σ̂ = Residual: 4.0208 (within-rail variability)



A simple model

Ignore grouping: yij = µ+ εij , εij ∼ N〈 0, σ2 〉

Call:

lm(formula = travel ~ 1, data = rail)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.500 5.573 11.93 1.10e-09 ***

Residual standard error: 23.65 on 17 degrees of freedom

where µ̂ = (Intercept): 66.50

σ̂ = Residual standard error: 23.65

are the direct estimators from the data:

> mean(rail$travel)

[1] 66.5

> sd(rail$travel)

[1] 23.64505



Is it a good model?
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Figure: Normal-Plot of the residuals (ri = yi − ŷi ) for the linear regression
model. There is a repetitive pattern of deviation from the standard normal due
to ignored grouping effect (Rail).



Add the grouping factor

Include grouping: yij = βi + εij , εij ∼ N〈 0, σ2 〉

Call:

lm(formula = travel ~ Rail - 1, data = rail)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Rail1 54.000 2.321 23.26 2.37e-11 ***

Rail2 31.667 2.321 13.64 1.15e-08 ***

Rail3 84.667 2.321 36.47 1.16e-13 ***

Rail4 96.000 2.321 41.35 2.59e-14 ***

Rail5 50.000 2.321 21.54 5.86e-11 ***

Rail6 82.667 2.321 35.61 1.54e-13 ***

Residual standard error: 4.021 on 12 degrees of freedom

Multiple R-squared: 0.9978, Adjusted R-squared: 0.9967

F-statistic: 916.6 on 6 and 12 DF, p-value: 2.971e-15

where the β̂i are listed as Rail1,...,Rail6 and σ̂ is 4.021.

I model fit is better (residual plots not shown)

I σ̂ (variability within the rails) decreased from 23.65 to 4.021

I model does not provide an estimate for the variability between rails.



Developing the random-effects model

Reparameterization of the linear model

yij = βi + εij

to

yij = β̄ + (βi − β̄) + εij , β̄ =
1

M

M∑
i=1

βi

leads to
yij = µ+ bi + εij

where β̄ is replaced by µ, the mean travel time across the population of
rails being sampled (fixed effect)

(βi − β̄) is replaced by bi , random variables representing the deviation
from the population mean of the mean travel time for the i th

rail; the distribution of the bi has to be estimated

εij random variable representing the deviation in travel time for
observation j on rail i from the mean travel time for rail i



Two factors: 1 fix / 1 random – the Machines dataset

Example for a “replicated, randomized block design” with an interaction term.
The dataset is included in the package nlme (R: data(Machines)).

Data:

score Productivity score achieved on a machine (measured 3 times)

Machine Type of machine used (3 levels)

Worker Subject used in the experiment (6 levels)

Interest:

1. Expected productivity score of the three different machines

2. Is there an interdependence of worker and machine?

3. Variation among workers (= between-worker variability, σ̂2
b)

4. Variation within a worker (= within-worker variability, σ̂2)



Two factors: 1 fix / 1 random – the Machines dataset
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Figure: Plot of the 6× 3× 3 data points, grouped by Worker (lines) in ascending
order of the mean score per worker. The measurements for the three different
machines (A, B, C) are depicted in different colors, the three replications as dots.
Overall the between-worker variability is not that large, while there is considerable
variability between machines.



Is there an interaction between worker and machines?
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Figure: As can be seen, worker 6 scored differently on machine B compared to
the others.



Two factors: 1 fix / 1 random – the Machines dataset

Model: yijk = µ+ βj + bi + bij + εijk

with yijk response variable: productivity score of worker i on
machine j at k th measurement

µ mean score across all 6 workers (fixed effect)

βj mean productivity score for each machine (fixed effect)

bi random effect of worker (= deviation from βj)

bij interaction term worker × machine (random due to
worker)

εijk error term

Assumptions:

1. bi ∼ N〈 0, σ2
1 〉 (“between-worker variability”)

2. bij ∼ N〈 0, σ2
2 〉 (interaction)

3. εijk ∼ N〈 0, σ2 〉 (error term or “within-worker variability”)

4. bi ⊥ bij , bi , bij ⊥ εij



Two factors: 1 fix / 1 random – the Machines dataset

Output (lmer):

Linear mixed model fit by REML

Formula: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

Data: machine

REML

215.7

Random effects:

Groups Name Variance Std.Dev.

Worker:Machine (Intercept) 13.90945 3.72954

Worker (Intercept) 22.85851 4.78106

Residual 0.92463 0.96158

Number of obs: 54, groups: Worker:Machine, 18; Worker, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 52.356 2.486 21.062

MachineB 7.967 2.177 3.660

MachineC 13.917 2.177 6.393

Correlation of Fixed Effects:

(Intr) MachnB

MachineB -0.438

MachineC -0.438 0.500



Two factors: 1 fix / 1 random – the Machines dataset

Output (lmer):

Random effects:

Groups Name Variance Std.Dev.

Worker:Machine (Intercept) 13.90945 3.72954

Worker (Intercept) 22.85851 4.78106

Residual 0.92463 0.96158

Number of obs: 54, groups: Worker:Machine, 18; Worker, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 52.356 2.486 21.062

MachineB 7.967 2.177 3.660

MachineC 13.917 2.177 6.393

where β̂j = Estimates under Fixed effects:

σ̂1 = Worker 4.78106 (between-worker variability)

σ̂2 = Worker:Machine 3.72954 (interaction term)

σ̂ = Residual: 0.96158 (within-worker variability)



Two factors: both random – the manager1 dataset

Example for a model with two random effects in a crossed design. (The
dataset manager1 is constructed.)

Background A behavioural researcher has devised a method for evaluating
“managerial style” by observing the ordinary workday
interactions of managers and rating certain kinds of
occurrences. Because the evaluation method is to be applied in
the field by many different evaluators, it is important to find
out whether ratings vary much or little from one trained
evaluator to another.

Interest: Variation among raters (= between-rater variability) with the
main question: “can the test be generalized”?

Design: Each rater evaluated all 20 managers (crossed design).

Data: score Score on an observational rating scale (measured once)

Rater (3 levels)

Manager Subject evaluated in the experiment (20 levels)



Two factors: both random – the manager1 dataset
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Figure: Boxplots of the 20 manager ratings separated by the three raters. The raters
seem to evaluate the managers differently.



Two factors: both random – the manager1 dataset

Model: yij = µ+ bi1 + bj2 + εij

with yij response variable: score given by rater i for manager j

µ mean score across all 20 managers (= estimate of the
population mean of all managers) (fixed effect)

bi1 random effect of rater i (= deviation from µ)

bj2 random effect of manager j (= deviation from µ)

εij error term

Assumptions:

1. bi1 ∼ N〈 0, σ2
1 〉 (“between-rater variability”)

2. bj2 ∼ N〈 0, σ2
2 〉 (“between-manager variability”)

3. εij ∼ N〈 0, σ2 〉 (error term or “within-rater variability”)

4. bi1 ⊥ bj2, bi1, bj2 ⊥ εij



Two factors: both random – the manager1 dataset

Output (lmer):

Linear mixed model fit by REML

Formula: score ~ 1 + (1 | Rater) + (1 | Manager)

Data: manager1

Random effects:

Groups Name Variance Std.Dev.

Manager (Intercept) 0.000 0.0000

Rater (Intercept) 79.561 8.9197

Residual 23.323 4.8293

Number of obs: 60, groups: Manager, 20; Rater, 3

Fixed effects:

Estimate Std. Error t value

(Intercept) 25.756 5.187 4.965

where µ̂ = (Intercept) 25.756

σ̂1 = Rater 8.9197 (between-rater variability)

σ̂2 = Manager 0.0000 (between-manager variability)

σ̂ = Residual: 4.8293

Note: σ̂2 = 0 indicates that the “between-manager” variability is not sufficient
to warrant incorporating Manager as a random effect into the model.



Two factors: both random – the pastes dataset

Example for a model with two random effects in a nested design. (The dataset
pastes is included in the package lme4a (R: data(Pastes)).

Data:

strength Concentration of a chemical product (measured 2 times)

batch Batch from which the quality control samples were drawn (10
levels)

sample Samples taken in order to measure the strength (3 levels)

Design: The samples are nested within the batches they are drawn from.

Interest:

1. Expected strength of paste

2. Variation among batches (= between-batch variability, σ̂2
b1)

3. Variation among samples (= between-samples variability, σ̂2
b2)

4. Variation within a sample (= within-sample variability, σ̂2)



Two factors: both random – the pastes dataset

Figure: Strength of paste preparations according to batch and sample within the
batch. There is large variability between the samples, the batches do not differ that
much.



Two factors: both random – the pastes dataset

Model: yijk = µ+ bi + bj(i) + εijk

with yijk response variable: strength of paste (k th measurement) in
sample j taken from batch i

µ mean score across all 10 batches (= estimate of the population
mean of all batches) (fixed effect)

bi random effect of batch i (= deviation from µ)

bj(i) random effect of sample j taken from batch i (= deviation from
µ)

εijk error term

Assumptions:

1. bi ∼ N〈 0, σ2
1 〉 (“between-batch variability”)

2. bj(i) ∼ N〈 0, σ2
2 〉 (“between-sample variability”)

3. εijk ∼ N〈 0, σ2 〉 (error term or “within-sample variability”)

4. bi ⊥ bj(i), b1, bj(i) ⊥ εijk



Two factors: both random – the pastes dataset

Output (lmer):

Linear mixed model fit by REML

Formula: strength ~ 1 + (1 | batch) + (1 | sample)

Data: Pastes

REML

247

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 8.4337 2.9041

batch (Intercept) 1.6573 1.2874

Residual 0.6780 0.8234

Number of obs: 60, groups: sample, 30; batch, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.6769 88.72

where µ̂ = (Intercept) 60.0533

σ̂1 = batch 1.2874 (between-batch variability)

σ̂2 = sample 2.9041 (between-sample variability)

σ̂ = Residual: 0.8234



A complex model – the oats dataset

Example for a “split-plot experiment” with two fixed and one random effect, an
interaction between the fixed effects and a fixed factor nested within a random
factor. (The dataset oates is included in the package lme4a (R:
data(Pastes)).

Data:

yield yield of oats (measured once)

nitro Nitrogen-fertilizer concentration used (4 levels)

Variety Different crop varieties (3 levels)

Block Large field that was splitted into 12 subplots for all possible
combinations of crop varieties and nitrogen fertilizer (6 levels)

Design:

I Next to the fixed and random effects there was an interest whether crop
variety and fertilizer concentration interact.

I The division of the block into plots and subplots was modelled with a
nested design.



A complex model – the oats dataset

Interest:

1. Expected yield of the different oat varieties depending on
fertilizer concentration

2. Variation among blocks (= between-block variability, σ̂2
1)

3. Variation among crop varieties (= between-variety variability,
σ̂2

2)

4. General variation (σ̂2)



A complex model – the oats dataset

Model: yijk = µ+ βj1 + βk2 + βjk3 + bi + bk(i) + εijk

with yijk response variable: yield of crop variety k in block i, treated
with nitrogen-level j

µ mean score across all 6 blocks (= estimate of the population
mean of all blocks) (fixed effect)

β1 nitrogen-concentration (fixed effect)

β2 crop variety (fixed effect)

β3 interaction nitrogen-conc. × crop variety (fixed effect)

bi random effect of block i (= deviation from µ)

bk(i) random effect of variety within block (= deviation from µ)

εijk error term

Assumptions:

1. bi ∼ N〈 0, σ2
1 〉 (“between-block variability”)

2. bk(i) ∼ N〈 0, σ2
2 〉 (“between-variety variability”)

3. εijk ∼ N〈 0, σ2 〉 (error term)

4. bi ⊥ bk(i), b1, bk(i) ⊥ εijk



A complex model – the oats dataset

Output (lmer):

Linear mixed model fit by REML

Formula: yield ~ ordered(nitro) * Variety + (1 | Block) + (1 | Block/Variety)

Data: Oats

REML

533.2

Random effects:

Groups Name Variance Std.Dev.

Variety:Block (Intercept) 106.06 10.299

Block (Intercept) 107.24 10.356

Block (Intercept) 107.24 10.356

Residual 177.08 13.307

Number of obs: 72, groups: Variety:Block, 18; Block, 6

where σ̂1 = Block 10.356 (between-batch variability)

σ̂2 = Variety:Block 10.299 (between-variety variability)

σ̂ = Residual: 13.307

βi fixed effects omitted
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