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Structure of this course

In the first part of this course we treat the basics of probability theory and of statistics in
discrete cases, where the variables involved have values e.g. in {0, 1}, N0 = {0, 1, 2, . . .} or
Z = {. . . ,−1, 0, 1, . . .}.
We will subsequently transfer concepts from the discrete to the continuous case, where
variables have ranges such as R or [0, 1]. This makes for a slightly repetitive structure of
the course, but it has so far proven to be a successful approach.

In the final part of this course we shall look into more complex models, such as those given
by multiple regression.
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Chapter 1

Introduction (Stahel, ch. 1)

For many areas of science the significance of statistics lies in its ability to

draw general conclusions about future data or entire populations using samples of data.

In particular, the fact that

all data are subject to certain variations

is taken into account. To quantify this,

models and laws of probability

are used.

Chance is subject to certain laws from probability theory, all of which are as reliable as
the other laws of mature. Whether the world really is random – or randomness is simply a
term to describe all unfathomable deterministic factors – is secondary to our considerations
here.
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Chapter 2

Models for count data

2.1 Introduction (Stahel, ch. 4.1)

A probability model describes the possible outcomes of an experiment and the chances
these outcomes have of being realized. In this chapter we shall treat discrete probability
models, whose outcomes are finite or “countable” (e.g. natural numbers). A probability
model allows the simulation of further data and thus admits insights into the plausibility
of particular variations in the data.

All experiments described here are to be understood as random experiments:

random experiment =

experiment whose outcome cannot be predicted, even by an oracle

2.2 Discrete probabilities (Stahel, ch. 4.2, 4.6)

To describe random experiments, we shall utilize a probability model. This consists of the
following parts:
• An underlying space Ω
• Elementary events ω
• A probability P

The underlying space and the elementary events relate as follows:

Ω = {possible elementary events ω︸ ︷︷ ︸
potential outcomes

}

Exampe: Tossing a coin twice
Ω = {KK,KZ,ZK,ZZ}, where K denotes “heads” and Z denotes “tails”.
Elementary event: e.g. ω = KZ

An event A is a subset of Ω:

Event A ⊂ Ω
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Example (cont.): A = {exactly 1 head} = {KZ,ZK}.

Set-theoretical operations (taking complements, unions, intersections) have a natural in-
terpretation in the language of events.

A ∪ B ⇔ A or B, where “or” is non-exclusive (“and/or”)

A ∩ B ⇔ A and B

Ac ⇔ not A

Example: A = the sun will shine tomorrow, B = it will rain tomorrow.
A ∪B means: tomorrow the sun will shine or it will rain (or possibly both); A ∩ B works
out as: tomorrow the sun will shine and it will also rain; Ac means: tomorrow the sun will
not shine.

A probability measure assigns a probability P (A) to each event A, such that the fol-
lowing three basic assertations (Kolmogorov axioms) hold:

1. All probabilities are non-negative: P (A) ≥ 0

2. The certain event (the full underlying space) has a probability equal to 1: P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) whenever A ∩ B = ∅, i.e. for events that cannot occur
simultaneously.

From these axioms, further rules can be derived, e.g.

P (Ac) = 1 − P (A),

P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

In the discrete case, all probabilities are determined by the probabilities of the elementary
events P ({ω}):

P (A) =
∑

ω∈A

P ({ω}).

Example (cont.) The probability of A = {exactly 1 head} = {KZ,ZK} is
P (A) = P (KZ) + P (ZK) = 1/4 + 1/4 = 1/2.

Probability theory essentially fixes the probabilities of certain events A (based on plau-
sibility or symmetry arguments, scientific theories, expert knowledge and data) and uses
the rules given above to derive the probabilities of certain other events B.
(Statistics takes the reverse approach: data – i.e. information about the occurence of
certain events – is used to draw conclusions about an unknown probability model and the
probabilities within it.)

Possible interpretions of a probability
• Idealized value of a relative frequency from many independent repetitions of the same
thing (frequentist)
• Measure of the belief that an event will occur (Bayesian)
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2.2.1 The probabilistic concept of independence

In general, knowledge of the individual probabilities P (A) and P (B) does not allow us to
compute P (A ∩ B).

If there is no causal link between the events A and B (i.e. neither common causes nor
preclusion), we define the following:

A and B are (stochastically) independent ⇔ P (A ∩ B) = P (A)P (B).

The independence of events simplifies many situations; in particular, it permits the com-
putation of P (A ∩ B) from P (A) and P (B). In practice plausibility arguments are often
used to declare the independence of two events.

Independence of multiple events A1, . . . An means e.g. that

P (A1 ∩ A2) = P (A1)P (A2),

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

The general defining property of independent events is the following:

P (Ai1 ∩ . . . ∩ Aik) = P (Ai1) · · ·P (Aik) for each k ≤ n and each 1 ≤ i1 < . . . < ik ≤ n.

2.3 Random variables (Stahel, ch. 4.3, 4.4)

Often random experiments have associated numerical values, i.e. for each elementary event
(outcome) ω there is a number X(ω) = x.

Example: Random draw of a playing card
Define the value function X by:

ω = Ace 7→ X(ω) = 11

ω = King 7→ X(ω) = 4

ω = Queen 7→ X(ω) = 3

ω = Jack 7→ X(ω) = 2

ω = Ten 7→ X(ω) = 10

ω = Nine 7→ X(ω) = 0

...
...

ω = Six 7→ X(ω) = 0

Thus in the example above, X(·) is a function. In general we define:

A random variable X is a function:

X : Ω → R

ω 7→ X(ω)

The function X(·) is not random, but its argument ω is.

11



While it is rather unusual to denote a function by X (or Y,Z, . . .), we shall see that
random variables sometimes admit calculations like those with ordinary variables such as
x (or y, z, . . .).

The outcomes of the random experiment (i.e. of ω) yield different possible values of
x = X(ω): the value of x is a realization of the random variable X. Thus a realization
of a random variable is the result of a random experiment (which may be described by a
number).

We call a random variable discrete if its range W = WX (the set of potential values
of X) is discrete, i.e. countable (its potential values can be numbered). For example:
W = {0, 1, . . . , 10} is finite and thus discrete, while W = N0 = {0, 1, 2, . . .} is infinite, but
still discrete; W = R is not discrete (but continuous). In this chapter we shall only treat
discrete random variables.

The distribution of a random variable

The random variable X takes its values (its potential realizations) with certain probabili-
ties. These are defined as follows:

Probability of X taking the value x

= P (X = x) = P ({ω; X(ω) = x})
=

∑

ω;X(ω)=x

P (ω).

Example (cont.): X = Value of a playing card drawn at random

Probability of 4 = P (X = 4)

= P ({ω; ω = a king})
= P (King of diamonds) + P (King of hearts) + P (King of clubs) + P (King of spades)

= 4/36 = 1/9.

The “list” of probabilities P (X = x) for all possible values of x is called the (discrete)
(probability) distribution of the (discrete) random variable X. Each random variable
X has a corresponding (probability) distribution, and vice versa:

Random variable X ⇔ (probability) distribution

Each (discrete) probability distribution satisfies the equality

∑

all x possible

P (X = x) = 1.

Example (cont.): X = Value of a playing card drawn at random
The probability distribution of X is

P (X = 11) = 1/9
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P (X = 10) = 1/9

P (X = 4) = 1/9

P (X = 3) = 1/9

P (X = 2) = 1/9

P (X = 0) = 4/9

If our only interest lies in the random variable X, we can ignore the underlying space Ω
– as it then suffices to know the distribution of X.

2.4 The binomial distribution (Stahel, ch. 5.1)

Regard the situation where the quantity of interest is the number of successes (or failures)
at something. Examples of this include quality control, success or failure of (medical or
biological) treatments, or gambling.

Example: Coin toss
A coin is tossed and randomly comes up heads (K) or tails (Z).
Regard the random variable X with values in W = {0, 1} describing the following:

X = 0 if the outcome is tails,

X = 1 if the outcome is heads.

The probability distribution of X can be described by a single parameter π:

P (X = 1) = π, P (X = 0) = 1 − π, 0 ≤ π ≤ 1.

A fair coin has the parameter π = 1/2.

Bernoulli(π) distribution:

A random variable X with range W = {0, 1} has a Bernoulli(π) distribution if
P (X = 1) = π, P (X = 0) = 1 − π, 0 ≤ π ≤ 1.

The Bernoulli distribution is a trivial mathematical description of the (non-)occurence of
an event.

Example (cont.): n-fold coin toss
Regard X = Number of heads from n independent coin tosses. Obviously the range of X
is the set W = {0, 1, . . . , n}. X can also be written as the sum of independent Bernoulli-
distributed random variables:

X =
n∑

i=1

Xi,

Xi =

{
1 i-th toss comes up heads
0 i-th toss comes up tails.
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In the example above, the distribution of X can be computed analytically. If X1, . . . ,Xn

are all independent and each follows a Bernoulli(π) distribution, then we know e.g. that

P (X = 0) = P (all X1 = . . . = Xn = 0) = (1 − π)n,

P (X = 1) = P (one Xi = 1 and all other Xj = 0) =

(
n

1

)
π(1 − π)n−1.

In general cases the binomial formula applies.

Binomial(n, π) distribution:

A random variable X with range W = {0, 1, . . . , n} has a Binomial(n, π) distribution if

P (X = x) =

(
n

x

)
πx(1 − π)n−x, x = 0, 1, . . . , n

where 0 ≤ π ≤ 1 is the success rate associated to the distribution.

(Here
(
n
x

)
is the binomial coefficient, which denotes the number of possible arrangements

of x successes and n − x failures).

As in the previous example, X denotes the number of successes/failures (occurence of a
particular event) out of n independent experiments. The independence of these experi-
ments is crucial if the binomial distribution is to apply.

Example: Sperm sexing (Tages-Anzeiger 6.12.2000)
The gender of calves can be influenced by a technique called sperm sexing, with a view
to breeding female calves. In an experiment 12 cows were inseminated with sperm that
had previously been sorted according to whether or not a Y chromosome was visible (i.e.
sperm sexing was applied). As this technique does not guarantee any outcome with 100%
certainty, we can consider it to be a random experiment. Let X be the number of female
calves bred by this method. A reasonable model for X is given by

X ∼ Binomial(12, π),

where π is an unknown parameter. In the experiment, x = 11 female calves were observed:
in other words, X = x = 11 was the actual realization.

Properties of the binomial distribution (cf. Fig. 2.1): P (X = x) attains its maximum
when x is equal to the integer part of (n + 1)π, and on both sides of this, the probabilities
decrease monotonically. When nπ(1−π) is not too small, the distribution has a bell shape.

2.5 Characteristic numbers of a distribution (Stahel, ch. 5.3)

An arbitrary (discrete) distribution can be summarized by 2 characteristic numbers, its
mean E(X) and its variance Var(X) (or its standard deviation σ(X) =

√
Var(X)).

The mean of a distribution describes its average location and its defined as

E(X) =
∑

x∈Wx

xP (X = x), Wx = range of X.
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Figure 2.1: The binomial probabilities P (X = x) as a function of x for various choices of
n and π. On the left, n = 100 and π = 0.1, 0.2, 0.3, 0.4, 0.5, and on the right, π = 0.5 and
n = 25, 50, 75, 100, 150.
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The variance and standard deviation of a distribution describe its variability:

Var(X)
∑

x∈Wx

(x − E(X))2P (X = x)

σ(X) =
√

Var(X).

A standard deviation has the same unit of measurement as the data it describes: if X is
measured e.g. in metres (m), then the unit of Var(X) is the square metre (m2), and that
of σ(X) the metre once again.

Example: Let X ∼ Bernoulli(π).
Then:

E(X) = 0 · P (X = 0) + 1 · P (X = 1) = π,

Var(X) = (0 − E(X))2P (X = 0) + (1 − E(X))2P (X = 1) = π2(1 − π) + (1 − π)2π

= π(1 − π),

σ(X) =
√

π(1 − π).

The binomial distribution has the following general properties (note that Bernoulli(π) =
Binomial(1,π)):

X ∼ Binomial(n, π),

E(X) = nπ, Var(X) = nπ(1 − π), σ(X) =
√

nπ(1 − π).

2.5.1 Cumulative probability distributions

In some situations it is more convenient to express a distribution by the so-called cumu-
lative distribution function (CDF), rather than by the “list” of values of P (X = x)
for all x:

F (x) = P (X ≤ x) =
∑

k≤x

P (X = k).

The function F (·) is monotone and increasing (not strictly, though), and it has the fol-
lowing limit behaviour:

F (−∞) = 0, F (+∞) = 1.

See Figure 2.2. Knowing the “list” of values P (X = x) (for all x) is the same as knowing
the CDF F (·), as either of them can be derived from the other. If for example X has
the range WX = {0, 1, . . . , n}, then P (X = x) = F (x) − F (x − 1) (x = 1, 2 . . . , n) and
P (X = 0) = F (0).

2.6 The Poisson distribution (Stahel, ch. 5.2)

The range of the Binomial(n, π) distribution is W = {0, 1, . . . , n}. If the range of a random
variable cannot be restricted a priori to a bounded set, then the Poisson distribution is an
option, at least for count data.
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Figure 2.2: Cumulative distribution function F (·) for X ∼ Binomial(100,0.5). Below:
enlargement for x ∈ [40, 60].

A random variable X with range N0 = {0, 1, 2, . . .} has a Poisson(λ) distribution if

P (X = x) = exp(−λ)
λx

x!
(x = 0, 1, 2, . . .) ,

using λ > 0 as a parameter. The Poisson distribution is the standard distribution for
unbounded count data.

Examples: The Poisson(λ) distribution can used to model the distribution of a random
variable X in the following cases:
X = Number of claims by an insuree within a year
X = Number of spontaneous events in a nerve cell within a second

(by the release of transmitters at a synapse)

The characteristic numbers of the Poisson distribution are:

E(X) = λ, Var(X) = λ, σ(X) =
√

λ.

2.6.1 Poisson approximation of the binomial distribution

Regard X ∼ Binomial(n, π) and Y ∼ Poisson(λ). If n is large, π is small and λ = nπ,
then we can do the following approximation:

P (X = x) =

(
n

x

)
πx(1 − π)n−x ≈ P (Y = x) = exp(−λ)

λx

x!
(x = 0, 1, . . . , n).
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This means that for large n and small values of π, Binomial(n, π) ≈ Poisson(λ) for
λ = nπ. In other words, the Poisson distribution can be interpreted as the distribution of
rare, independent events (rare in each individual case, but possibly occuring in large
numbers otherwise.
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Chapter 3

Statistics for count data

3.1 Three key questions in statistics (Stahel, Kap. 7.1)

A basic concern of statistics and statisticians is the use of one or more observations to
make inferences about one (or more) parameters in a probability model.

Example (cont.): Let x = 11 be the actual number of female calves bred by the sperm
sexing method (cf. chapter 2.4). We regard x = 11 as a realization of the random variable
X ∼ Binom(12, π), and would like to draw conclusions about the unknown parameter π
based on the observation x = 11.

First key question: Which parameter value is the most plausible given the observations?
The answer to this question is (point) estimation.

Second key question: Are the observations (statistically) compatible with a given pa-
rameter value? The answer to this second question is statistical testing.

Third key question: Which parameter values are (statistically) compatible with the
observations? The answer to this question takes the form of a confidence interval.
Confidence intervals are more general and informative than statistical tests.

Example (cont.): In the sperm sexing example, the three key questions could be formulated
as follows:
1. Which is the most plausible value for the parameter π (given the observation x = 11)?
2. Is the observation x = 11 compatible with the parameter π = 0.7?
3. Which set (interval) for the parameter π is compatible with the observation x = 11?

3.2 Estimation, statistical testing and confidence intervals
for the binomial distribution (Stahel, ch. 7.2, 8.2, 9.1, 9.2)

Regard the following situation: we have an observation x given as a realization of X ∼
Binomial(n, π). From this, we would like to make inferences about the unknown parameter
π.
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3.2.1 (Point) Estimation

There is a very practical way of finding an estimate of π. As E(X) = nπ (see chapter
2.5), we can express π as E(X)/n. The value of n can be assumed to be known (as it is
the number of independent replications of the measurement), and thus the only unknown

quantity is E(X). One pragmatic estimate is then given by Ê(X) = x(= observation), i.e.
by equating the (single) observation and its expectation. We thus obtain:

π̂ = x/n.

3.2.2 Statistical testing

Example: We toss a coin 100 times.
Regard the random variable X = number of heads (K) from 100 tosses of a coin. A rea-
sonable model for this is X ∼ Binomial(100, π). We observe (the realization) x = 58 and
would like to test whether the coin is fair, i.e. whether π = 1/2.

Motivation

To design a test, we can reason as follows: Assume the coin is fair, i.e. π = 1/2, and
compute the probability of “implausible” events of the form {X ≥ c} for “large” values of c.
The aim is to quantify whether or not the observation x = 58 belongs to an “implausible”
event (whence the conclusion might be drawn that the coin is unfair, that is: π > 1/2).
The following table gives us the relevant probabilities for X ∼ Binomial(100, 1/2):

c = 52 c = 53 c = 54 c = 55 c = 56 c = 57 c = 58 c = 59 c = 60

P (X ≥ c) 0.382 0.309 0.242 0.184 0.136 0.097 0.067 0.044 0.028

Usually an event is declared to be “implausible” if its probability does not exceed 5%. In
our example we can see that the event X ≥ 58, which just about contains our observation
x = 58, has probability 6.7% and is thus still plausible. In other words, the observation
x = 58 can be regarded as plausible when a fair coin is used. However, if we had obtained
59 heads, we would no longer have seen this as a plausible event, as the corresponding
probability is 4.4%, which is insufficient. Of course the probability level 5% is an arbitrary
cutoff point, and we shall later characterize this by the so-called p-value.

Formal procedure

A statistical test of the parameter π in the model X ∼ Binomial(n, π) has the following
structure:

1. Specify the so-called null hypothesis H0:

H0 : π = π0,

and (taking the exact formulation of the underlying problem into account) a so-called
alternative hypothesis HA:

HA : π 6= π0 (two-sided)

π > π0 (one-sided and open above)

π < π0 (one-sided and open below).
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Example(cont.): We toss a coin 100 times.
Regard the random variable X = number of heads from 100 tosses, for which we have
the model X ∼ Binomial(100, π). We would like to investigate the fairness of the coin. Is
it biased towards turning up heads too often? In the language of statistical testing, this
means: H0 : π = π0 = 1/2 and HA : π > π0 = 1/2. In particualar, the choice of the
alternative must come from the question under investigation.

2. Fix the significance level α. Typical choices would be α = 0.05 (5%) or α = 0.01 (1%).

3. Determine the rejection region K. Qualitatively speaking, K should be directed
towards the alternative hypothesis:

K = [0, cu] ∪ [co, n] if HA : π 6= π0,

K = [c, n] if HA : π > π0,

K = [0, c] if HA : π < π0.

At a quantitative level K is chosen to satisfy the equation

PH0
(X ∈ K) = Pπ0︸︷︷︸

from Binomial(n, π0)

(X ∈ K)
≈

≤ α. (3.1)

Example (cont.): In the example of 100 coin tosses we had H0 : π = 1/2 (i.e. π0 = 1/2)
and HA : π > 1/2. For a test at level α = 0.05 we have already seen in the above table
that K = [59, 100].

4. Now – and only now – look at whether the observation x lies in the rejection region:
if it does: reject H0 (which means that the alternative hypothesis is “significant”)
if it does not: stay with H0 (which does not imply that H0 has been proven statistically).
This kind of testing is founded on the principle of contradiction; a statistical proof is
only possible when the null hypothesis can be rejected. This type of scientific inductive
reasoning was already propagated by Aristotle in the classical era.

Example (cont.): In the example of 100 coin tosses we observed x = 58 and will therefore
not be able to reject H0. This means that (at the significance level α = 0.05) there is no
evidence the coin is biased towards turning up heads (K).

Example (cont.): When using sperm sexing (cf. chapter 2.4), x = 11 out of n = 12 calves
bred were female. Those marketing this method claim that the probability of success
exceeds 70%. The test of this can be carried out as follows:
Model: X ∼ Binomial(12, π)
H0 : π = π0 = 0.7
HA : π > π0 = 0.7
Significance level: take α = 0.05

Rejection region: Pπ=0.7(X ∈ K)
≈

≤ 0.05  K = {12}
Conclusion: Keep H0, i.e. the marketing claim is not significant in the light of the evidence.
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Type I and Type II errors

A statistical test can be susceptible to two types of errors.
Type I errors: Mistakenly rejecting H0 despite H0 being true.
Type II errors: Mistakenly keeping H0 despite the alternative being true.
A type I error is considered “worse” than a Type II one and is directly controlled by the
construction of the test: we have (cf. formula (3.1)):

P (Type I error) = PH0
(X ∈ K)

≈

≤ α.

Thus the significance level controls the probability of a Type I error. We also know that:

P (Type II error) increases if α is made smaller.

So the choice of α involves a compromise between Type I and Type II errors. As the
primary aim is to avoid Type I errors, it is α that is kept especially small, e.g. at α = 0.05.

Example (cont.): In the sperm sexing setup, assume now that the true value of the pa-
rameter π is 0.8 ∈ HA (the test above was specified for H0 : π = 0.7, HA : π > 0.7 and
α = 0.05). As the rejection region for this test is K = {12} (see above), we then have

P (test keeps H0 even though π = 0.8) = Pπ=0.8(X ≤ 11) = 1 − Pπ=0.8(X = 12) = 0.93.

This means that a Type II error has a very high probability of occurring (assuming that
π = 0.8). While this is naturally very disappointing, it is fairly inevitable for small samples

sizes such as 12. Note, though, that the probability of a type I error nonetheless is
≈

≤ 0.05.

P-values

The decision whether to “reject” or “keep” the null hypothesis H0 depends on the some-
what arbitrary choice of the significance level α. On a mathematical level, this means that
the rejection region K = K(α) is dependent on the choice of α.

The following qualitative conclusion is fairly clear:

The rejection region K = K(α) becomes smaller when α decreases−

as a small value for α signifies a small probability for a type I error (and this is the
case when rejecting the null hypothesis H0 is difficult, i.e. the rejection region is small).
Conversely, K = K(α) becomes ever larger as α increases. This implies the existence of a
significance level at which the null hypothesis H0 is “just about” rejected.

The p-value of a statistical test is defined a the smallest significance level
at which the null hypothesis H0 is (still) rejected

We can compute the p-value of a test by postulating that the observation X = x (which we
know) lies on the boundary of the rejection region K = K(p-value), where the significance
level = the p-value; cf. Figure 3.1.
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Observation X=x

Sum of probabilities = p−value

One−sided test with alternative hypothesis H_A: pi > pi_0

Distribution of X under H_0: pi = pi_0

Figure 3.1: The p-value of a test with one-sided alternative hypothesis HA : π > π0.

A p-value is more informative than the mere decision taken at some pre-specified signif-
icance level α (e.g. α = 0.05). In particular the definition of the p-value implies that
we

reject H0 if p-value ≤ α

keep H0 if p-value > α.

In addition to this simple decision rule, a p-value quantifies how significant an alternative
hypothesis is (i.e. how much evidence there is for the rejection of H0). This sometimes
put into words in the following way:

p-value ≈ 0.05 : weakly significant

p-value ≈ 0.01 : significant

p-value ≈ 0.001 : highly significant

p-value ≤ 10−4 : extremely significant

Example (cont.): In the sperm sexing example we use the null hypothesis π = 0.7 and the
alternative hypothesis π > 0.7. For the observation x = 11, a realization of the random
variable X ∼ Binomial(12, π), we have the p-value

Pπ=0.7(X ≥ 11) = Pπ=0.7(X = 11) + Pπ=0.7(X = 12) = 0.085.

As previously seen, this does not lead to the rejection of H0 at the significance level
α = 0.05. (If - for whatever reason - the significance level α = 0.09 had been fixed in
advance, H0 would now be rejected at this significance level α = 0.09).
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3.2.3 Confidence intervals

One instrument which is more informative than a statistical test is a so-called confidence
interval. It suggests an answer to the 3rd basic question of Chapter 3.1: Which values of
π are (statistically) compatible with the observation x?

A confidence interval I at level 1− α consists of all parameter values that are compatible
with the observation in terms of the statistical test at level α (in general, the two-sided
test is used here). Mathematically speaking, this is expressed as:

I = {π0; null hypothesis H0 : π = π0 is kept}. (3.2)

This constitutes a kind of duality between tests and confidence intervals.

The computation of a confidence interval can be performed graphically or by using a table.
If the sample size n is “large”, a so-called normal approximation (cf. Chap. 4.5) may be
used. The latter yields the following confidence interval I at level 1 − α = 0.95 for the
unknown parameter π:

I ≈ x

n
± 1.96

√
x

n
(1 − x

n
)
1

n
(3.3)

The confidence interval I = I(x) depends on the observed value x. If the corresponding
random variable X is plugged in instead of the observation, I(X) is random and has the
following property:

P (π ∈ I(X))
≈
> 1 − α.

This can be interpreted in the following way: the true parameter value π has probability
1 − α of being contained in the confidence interval I.

Example (Cont.): For the sperm sexing procedure, the two-sided confidence interval ob-
tained at level 1 − α = 0.95 by reference to a table or by using a computer to compute
(3.2) is

I = (0.615, 0.998) .

In other words, the true “breeding” parameter π has a probability of 95% of being con-
tained in I. Thus due to the small sample size, there is still substantial uncertainty as to
the long-term success of the procedure. The approximating formula in (3.3) is not suited
to this example, as the sample size n = 12 is rather small. If it were used nonetheless, it
would yield the “confidence interval”

I ≈ (0.760, 1.073) .

Here the right endpoint is obviously too large, as the parameter π cannot be greater than
1.

3.3 Estimation, statistical testing and confidence intervals
for the Poisson distribution (Stahel, ch. 7.2, 8.1, 9.1)

Consider the following situation: let an observation x be given and understood to be a
realization of the random variable X ∼ Poisson(λ). We would like to make inferences
about the unknown parameter λ.
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3.3.1 (Point) Estimation

As E(X) = λ (cf. Chap. 2.6), we can use the pragmatic estimation of E(X) by the
observation x to obtain the following estimate of λ:

λ̂ = x.

3.3.2 Statistical testing

A statistical test for the parameter λ in the model X ∼ Poisson(λ) can be carried out in
complete analogy to the one for the binomial distribution in Chapter 3.2.2.

1. Specify the null hypothesis H0:

H0 : λ = λ0,

and an alternative hypothesis HA that suits the problem at hand:

HA : λ 6= λ0 (two-sided)

λ > λ0 (one-sided and open above)

λ < λ0 (one-sided and open below).

2. Fix the significance level α, e.g. α = 0.05.

3. Determine the rejection region K. Qualitatively speaking, K should be directed
towards the alternative hypothesis:

K = [0, cu] ∪ [co,∞) if HA : λ 6= λ0,

K = [c,∞) if HA : λ > λ0,

K = [0, c] if HA : λ < λ0.

At a quantitative level K is chosen to satisfy the equation

PH0
(X ∈ K) = Pλ0︸︷︷︸

from Poisson(λ0)

(X ∈ K)
≈

≤ α.

4. Now – and only now – look at whether the observation x lies in the rejection region:
if it does: reject H0;
if it does not: stay with H0.

The concepts of Type I and Type II errors are identical to those in Chapter 3.2.2.

3.3.3 Confidence intervals

The confidence interval I at level 1 − α (cf. Chapter 3.2.3) consists of all values of
the parameter λ that are accepted by the corresponding statistical test. Sometimes the

25



following approximate two-sided confidence interval at level 1 − α = 0.95 may also be of
use:

I = I(x) ≈ x ± 1.96
√

x.

Example: During the year 1992, there were x = 554 deaths at road accidents in Switzer-
land. We can take this sum to be a realization of X ∼ Poisson(λ). The estimate for λ is
then λ̂ = 554, and the corresponding confidence interval is I = I(x) ≈ (507.9, 600.1).
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Chapter 4

Models and statistics for
continuous data

4.1 Introduction

Many applications do not involve count data but measured data, which in principle have
continuous values. As an illustration we consider two sets of data. In the first set, we
compare two methods of determining the latent heat of melting ice. Repeated measure-
ments of energy released during the transition of ice at −0.72◦ C to liquid water at 0◦ C
have yielded the following data (in cal/g):

Method A 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03
Method A 80.02 80.00 80.02
Method B 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

Although these measurements have been performed with the utmost care, and all con-
founding influences have been removed, the measurements nonetheless exhibit a certain
degree of variance. We shall model this variance within the series of measurements as
random, i.e. as realizations of random variables. Afterwards we will be able to answer the
question as to whether the measurements are random – or whether it is more plausible
that a systematic difference exists between these methods, one that would be visible in
the whole population and thus in any further measurements. In the latter case, we shall
quantify this systematic difference.

In the second example the aggregation of platelets in the blood was measured in 11 indi-
viduals before and after smoking a cigarette. The following data quantify the proportion
(in percent) of blood platelets aggregated after stimulation.

Individual 1 2 3 4 5 6 7 8 9 10 11
Before 25 25 27 44 30 67 53 53 52 60 28
After 27 29 37 56 46 82 57 80 61 59 43

Once more, the data fluctuate in an unpredictable manner. This time, however, the varia-
tion is not so much due to measurement errors, but rather to variation between individuals
(presumably there would also be a certain amount of variation for each individual, if re-
peated measurements were carried out). Most – but not all – of the people in the study
exhibit higher rates of aggregation after smoking, and the main question is whether this
effect is random (and thus specific to the sample) or systematic (thus applying to the
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wider population). In the latter case we would again like to quantify the average increase
as far as possible.

4.2 Descriptive statistics (Stahel, ch. 2 and 3.1, 3.2)

For statistical analyses, it is important not to merely fit a model blindly or apply a
statistical technique without thinking. The data should always be displayed graphically in
a suitable way, as only this permits the discovery of unknown structures and peculiarities.
Certain characteristic numbers can also give rough characteristics of a dataset.

In what follows, the data will generally be referred to as x1, . . . , xn.

4.2.1 Characteristic Numbers

Often the aim is to provide a numerical summary of the distribution of the data. For this
at least two characteristic numbers are needed: one for location and one for spread. The
best-known characteristic numbers of these types are the arithmetic mean

x =
1

n

n∑

i=1

xi

to describe the location and the empirical standard deviation

sx =
√

var =

√√√√ 1

n − 1

n∑

i=1

(xi − x)2.

to describe the spread. (The denominator n − 1 is taken instead of n for mathematical
reasons, to stop the estimate from having a “systematic” error.)

Some alternative characteristic numbers are the median as a measure of location and the
interquartile range as a measure of spread. These two are defined using quantiles.

Quantiles

The empirical α quantile is the value which α × 100% of the data are smaller than and
(1 − α) × 100% of the data greater than.

For its formal definition we shall need the ordered values:

x(1) ≤ x(2) ≤ . . . ≤ x(n).

Now the empirical α quantile can be defined as

1

2
(x(αn) + x(αn+1)) if α · n is an integer,

x(k) where k = next integer greater than α · n; if α · n is not an integer.

The (empirical) median is the empirical 50% quantile, i.e. it marks the “middle” observa-
tion and is a measure of the location of the data.
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The interquartile range is defined as

empirical 75% quantile − empirical 25% quantile ,

and is a measure of the spread of the data.

The advantage of the median and interquartile range lies in their robustness: they are
less susceptible to the influence of extreme observations than the arithmetic mean and
standard deviation.

Example: Measuring the latent heat of melting ice by Method A
On the basis of n = 13 measurements we obtain the arithmetic mean x = 80.02 and
the standard deviation sx = 0.024. Furthermore, we have 0.25n = 3.25, 0.5n = 6.5 and
0.75n = 9.75 – which means that the 25% quantile is x(4) = 80.02, the median x(7) = 80.03
and the 75% quantile x(10) = 80.04.

Standardizing

By shifting and scaling their values, we can make two or more sets of data have the
same location and spread. In particular, we can standardize a dataset in such a way
that its mean becomes zero and its standard deviation 1. This is achieved by the linear
transformation

zi =
xi − x

sx
(i = 1, . . . , n) .

All those properties of a distribution that are invariant under shifts and scaling constitute
the shape of a distribution. One of these properties is the skewness (asymmetry) of a
distribution, which can also be quantified by characteristic numbers.

4.2.2 Graphical methods

One method of gaining an overview of the data is the histogram. To plot a histogram, we
form classes (ck−1, ck] and ascertain the frquency hk of data lying in each of these intervals.
Then for each class, we plot a bar whose area is proportional to its corresponding hk.

A boxplot is a rectangle bounded by the 25% and 75% quantiles, which additional lines
reaching out to the smallest and greatest “normal” values, respectively (where by defini-
tion the a normal value is inside the box or outside it by at most 1.5 times the interquartile
range). In addition to this, outliers (any data other than the “normal” values) are repre-
sented by stars, and the median by a line. The boxplot is especially suited to comparisons
of a variable that appears in different groups (which generally represent different types of
experimental conditions); cf. Figure 4.1.

The empirical cumulative distribution function Fn(·) is a step function that is zero below
x(1) and jumps by 1

n at each x(i) (values that appear multiple times lead to jumps that

are multiples of 1
n). In other words:

Fn(x) =
1

n
· number of{i | xi ≤ x}.

Figure 4.2 shows the empirical cumulative distribution function for the measurements of
the latent heat of melting ice when using Method A.
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Figure 4.1: Boxplots for the two methods of determining the latent heat of melting ice.
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Figure 4.2: Empirical cumulative distribution function for the measurements of the latent
heat of melting ice when using method A.

Several variables

When we measure two different quantities, i.e. we have data of the form (x1, y1), . . . (xn, yn),
our main interest lies in the connections and dependencies between these variables. These
can be observed in the scatter plot, which displays the data as points in the plane: the
i-th observation corresponds to the point with the coordinates (xi, yi). Figure 4.3 shows
a scatter plot for the values “before” and “after” in the blood platelet aggregation study.
There evidently is a clear monotone dependency; thus individuals can tend to strong or
weak aggregation regardless of their smoking habit.

The most common numerical summary of dependence is given by the empirical corre-
lation r (also denoted by ρ̂):

r =
sxy

sxsy
, sxy =

∑n
i=1(xi − x)(yi − y)

n − 1
.

The empirical correlation is a scalar in the interval [−1,+1]. Its sign indicates the direction
of the linear dependence of x and y, and its absolute value measures the strength of this
dependence. In the example on aggregation of platelets in the blood, the empirical corre-
lation is 0.9, which matches the impression we get from the scatterplot. When computing

30



25 30 35 40 45 50 55 60 65

25
30

35
40

45
50

55
60

65
70

75
80

Values before smoking

V
al

ue
s 

af
te

r 
sm

ok
in

g

Figure 4.3: Scatter plot of blood platelet aggregation before and after smoking a cigarette.

r, it is important to take the scatterplot into account too, as very different structures in
the data can yield the same value of r. More on this can be found in Chapter 5.1.

4.3 Continuous random variables and distributions (Stahel, ch.

6.1 – 6.4, 11.2)

A random variable X is continuous if its range WX is continuous, e.g. Wx = R, R+ or
[0, 1].

In Chapter 2.3 we learned how to describe the probability distribution of a discrete random
variable by means of the “point” probabilities P (X = x) for all x in its range. For any
continuous random variable X, however, we know that

P (X = x) = 0 for all x ∈ WX .

This makes it impossible to describe the distribution of X using point probabilities.

We can however describe the distribution of a continuous random variable X by the
probabilities of all intervals (a, b] (a < b):

P (X ∈ (a, b]) = P (a < X ≤ b) .

This information is also contained in the cumulative distribution function F (x) = P (X ≤
x):

P (a < X ≤ b) = F (b) − F (a) .

Altogether this means that we can describe the distribution of a continuous random vari-
able X by means of its cumulative distribution function.

4.3.1 (Probability) Densities

At an infinitesimal level, the concept of a “point” probability P (X = x) can also be
described for continuous random variables.
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The (probability) density f(·) is defined as the derivative of the cumulative distribution
function:

f(x) = F ′(x) .

This leads us to the following interpretation:

P (x < X ≤ x + h) ≈ hf(x) if h is small.

This is due to an approximation stemming from the definition of the dervative:

P (x < X ≤ x + h)/h = (F (x + h) − F (x))/h ≈ f(x) .

As F (x) =
∫ x
−∞

f(y)dy is its integral, we obtain the following properties of the density:

1. f(x) ≥ 0 for all x (as F (·) is an increasing function)

2. P (a < X ≤ b) =
∫ b
a f(x)dx

3.
∫∞

−∞
f(x)dx = 1 (due to 2.)

Characteristic Numbers of continuous distributions

For a continuous random variable X, we can also define a mean E(X) and standard
deviation σX . Their meaning is the same as in the discrete case in Chapter 2.5; only their
computation differs. We have:

E(X) =

∫ ∞

−∞

xf(x)dx ,

Var(X) =

∫ ∞

−∞

(x − E(X))2f(x)dx, σX =
√

Var(X) .

The frequentist interpretation of the mean is an ideal value for the arithmetic mean of a
random variable (for a large number of samples).

If we transform X by means of a function g : R → R to obtain a new random variable
Y = g(X), we get:

E(Y ) = E(g(X)) =

∫ ∞

−∞

g(x)f(x)dx .

This tells us that

Var(X) = E
(
(X − E(X))2

)
,

which incidentally also holds for discrete random variables. The following computational
rules (valid also for discrete random variables) have proven useful: for any a, b ∈ R,

E [a + bX] = a + b E [X] ,

V ar(X) = E [X2] − (E [X])2 ,

V ar(a + bX) = b2V ar(X) .
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The quantiles (of the distribution of X) q(α) (0 < α < 1) are defined as follows:

P (X ≤ q(α)) = α .

This means that

F (q(α)) = α ⇔ q(α) = F−1(α) .

We can also interpret this by saying that q(α) is the point at which the area under the
density curve f(·) from −∞ to q(α) is equal to α. For this cf. Figure 4.4. The 50%
quantile is the median.
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Figure 4.4: Illustration of the 70% quantile q(0.7). On the left we see the density curve,
for which the area under the curve from −∞ (or 0) to q(0.7) is equal to 0.7. On the right
we see the cumulative distribution function, for which q(0.7) is the vlaue of the inverse at
0.7.

4.4 Important continuous distributions (Stahel, ch. 6.2, 6.4, 6.5,

11.2)

In Chapter 4.3 we saw that we can characterize the distribution of a continuous random
variable by its cumulative distribution function F (·) or by its density f(·).

4.4.1 The uniform distribution

The uniform distribution appears when describing rounding errors and when formalizing
complete “ignorance”.

A random variable X with range WX = [a, b] has a Uniform([a, b]) distribution if

f(x) =

{
1/(b − a) if a ≤ x ≤ b
0 else
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Here the density is constant on the whole range WX = [a, b] of X – thence the name
“uniform”.

The corresponding cumulative distribution function is

F (x) =





0 if x < a
(x − a)/(b − a) if a ≤ x ≤ b
1 if x > b

The key characteristic numbers of X ∼ Uniform([a, b]) are as follows:

E(X) = (a + b)/2 ,

Var(X) = (b − a)2/12, σX =
√

V ar(X) .

4.4.2 The exponential distribution

The exponential distribution is the simplest model of waiting times (e.g. until failure).

Example: Ion channels
Within muscle and nerve cell membranes there are many channels that in an open state
permit the circulation of ions. Simple kinetic models indicate that the opening times of
such channels can be modelled with an exponential distribution.

A random variable X with range WX = R+ = [0,∞) has an exponential distribution with
parameter λ ∈ R+ (Exp(λ)) if

f(x) =

{
λ exp(−λx), if x ≥ 0
0 else

The corresponding cumulative distribution function is

F (x) =

{
1 − e−λx if x ≥ 0
0 if x < 0

The density and cumulative distribution function for λ = 1 can be seen in Figure 4.4.

The key characteristic numbers of a random variable X ∼ Exp(λ) are as follows:

E(X) = 1/λ ,

Var(X) = 1/λ2, σX =
√

V ar(X) .

One connection between the exponential and the Poisson distribution is the following:
if the times between successive failures of a system are distributed as Exp(λ), then the
number of failures in an interval of length t is distributed according to Poisson(λt).

4.4.3 The normal (or Gauss) distribution

The normal distribution (also known as the Gaussian distribution) is the most common
distribution taken on by measured values.
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Examples: Measurements of light emissions from a “white dwarf” star can be modelled as
realizations of normally distributed random variables.

A random variable X with range WX = R has a normal distribution with parameters
µ ∈ R and σ2 ∈ R+ (N (µ, σ2)) if

f(x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
.

The corresponding cumulative distribution function F (·) does not have a closed-form ex-
pression, but can only be written by the integral F (x) =

∫ x
−∞

f(y)dy.

The key characteristic numbers for X ∼ N (µ, σ2) are:

E(X) = µ,

Var(X) = σ2, σX =
√

V ar(X) .

Thus the parameters µ and σ2 possess a natural interpretation as mean and variance of the
distribution. Normal distributions with three different combinations of these parameters
are shown in Figure 4.5.
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Figure 4.5: Densities (left) and cumulative distribution functions (right) of the normal
distributions with parameters µ = 0, σ = 0.5 (—), µ = 0, σ = 2 (- - - -) and µ = 3, σ = 1
(- · - ·).

The standard normal distribution

The normal distribution with parameters µ = 0 and σ2 = 1 is known as the starndard
normal distribution. Its density and cumulative distribution function have their own
notation:

ϕ(x) =
1√
2π

exp

(
−x2

2

)
,

Φ(x) =

∫ x

−∞

ϕ(y)dy.
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The values of the function Φ(·) are tabulated. We shall see below that any normal distribu-
tion N (µ, σ2) can be transformed into a standard normal distribution. Thus the values of
Φ(·) will suffice for the calculation of probabilities and quantiles from any general normal
distribution N (µ, σ2).

4.4.4 Transformations

Sometimes it can be useful to transform a continuous random variable X:

Y = g(X) ,

where g : R → R is a transformation.

Linear transformations

Regard the linear transformation

g(x) = a + bx (a, b ∈ R) .

The mean and variance of the transformed random variable Y = g(X) are then (cf. chapter
4.3.1):

E(Y ) = E(a + bX) = a + b E(X),

Var(Y ) = Var(a + bX) = b2 Var(X), σY = bσX . (4.1)

Furthermore, the following inequalities hold for b > 0:

α quantile of Y = qY (α) = a + bqX(α),

fY (y) =
1

b
fX

(
y − a

b

)
. (4.2)

Standardizing a random variable

Regard a continuous random variable X. We can always apply a suitable linear transfor-
mation to X such that the transformed random variable has mean 0 and variance 1. This
can be done in the following manner: take the linear transformation

g(x) = −E(X)

σX
+

1

σX
x

and define the transformed random variable

Z = g(X) =
X − E(X)

σX
.

Using the rules in (4.1), we then get: E(Z) = 0, Var(Z) = 1.

If X ∼ N (µ, σ), the standardized random variable has a standard normal distribution:

Z =
X − µ

σ
∼ N (0, 1) .
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This follows from the calculation rules on linear transformations of densities (4.2). (More
generally, we know that any linear transformation of a normal distribution yields another
normal distribution. This property of linear transformations keeping the distribution
within the same family is a special property which the normal distribution has – for other
families of distributions, it does not always hold).

Example: Computing probabilities for N (µ, σ2).
We regard X ∼ N (2, 4), and would like to compute P (X ≤ 5). To this end, we proceed
in the following way:

P (X ≤ 5) = P (
X − 2√

4
≤ 5 − 2√

4
) = P (Z ≤ 3/2) ,

where Z ∼ N (0, 1). Thus

P (X ≤ 5) = P (Z < 3/2) = 0.933 ,

a numerical value easily looked up in a table or using a computer.

Applying Rule (4.2) to the computation of the 95% quantile when a = −µ/σ = −2/2 = −1
and b = 1/σ = 1/2, we get:

qX(0.95) = (qZ(0.95) + 1) · 2 = (Φ−1(0.95) + 1) · 2 = 5.290 .

Non-linear transformations

If g : R → R is an arbitrary transformation, many of the properties discussed above
become more complicated. However, one formula can be quite useful. For a continuous
random variable X with density fX(·), we have

E(g(X)) =

∫ ∞

−∞

g(x)fX(x)dx .

For more see chapter 4.3.1.

One frequently-used distribution is the lognormal distribution. If X ∼ N (µ, σ2), then
Y = exp(X) has a lognormal distribution with parameters µ ∈ R and σ2 ∈ R+. The
lognormal distribution is no longer symmetric, and has mean E(Y ) = exp(µ + σ2/2).

4.4.5 Analogies between models and data

Random variables and distributions describe an entire population, i.e. what could happen
and with what probability. We interpret data x1, . . . , xn as realizations of random variables
X1, . . . ,Xn (we could look at the n data as n realizations of of a single random variable
X), but the notation using several random variables has some advantages (cf. Section
4.5).

We can use data to draw conclusions about the underlying distribution. In particular, all
quantities defined for random variables have a counterpart for finite data sets. The follow-
ing table lists these related quantities, for which the empirical expressions are estimates of
the theoretical quantities. As the sample size n increases, these estimates get ever closer
to their theoretical counterparts.

37



Data Population (Model)

Histogram Density
Empirical cumulative distribution function Theoretical cumulative distribution function
Empirical quantile Theoretical quantile
Arithmetic mean Mean
Empirical standard deviation Theoretical standard deviation

4.4.6 Checking assumptions of normality

We often would like to establish whether a given distribution constitutes a useful model
for a set of data. In other words, we want to check if the data x1, . . . , xn can be considered
as realizations of a random variable X (e.g. with a cumulative distribution function F (·))
with this distribution.

We could in principle compare the histogram of the empirical data with the density of
the model distribution. However, deviations and similarities are often better seen when
looking at quantiles.

Q-Q plots

The idea of a Q-Q (quantile-quantile) plot is to plot the empirical quantiles against the
theoretical ones. Specifically: let α run through the sequence 0.5/n, 1.5/n, . . . , (n−0.5)/n
and plot the theoretical quantiles q(α) of the model distribution on the x-axis, and the
empirical quantiles corresponding to the ordered observations x[1] < x[2] < . . . < x[n] on
the y-axis. If the observations really do stem from the distribution according to the model,
these plotted points should lie roughly on the diagonal line y = x.

Normal plots

We usually do not want to check just one distribution, but a whole class of them – for
instance the class of normal distributions with arbitrary parameters µ and σ.

A Q-Q plot using the standard normal distribution N (0, 1) as a model
is called a normal plot.

If the data are realizations of the random variable X ∼ N (µ, σ2), then the quantiles of X
are:

q(α) = µ + σΦ−1(α) .

See also (4.2). Thus for such a distribution, the points in any normal plot should lie
on the line µ + σ · x. Figure 4.6 contains two normal plots: one generated by a normal
distribution, and one case where the data stems from a heavy-tailed distribution. Further
illustrated examples can be found in Figure 11.2 of Stahel’s book.
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Figure 4.6: Left: Normal plot for 50 realizations of N (0, 1). Right: Normal plot for 50
realizations of the Cauchy distribution (very heavy-tailed).

4.5 Functions of random variables and propagation of errors

(Stahel, ch. 6.8 – 6.11)

Most applications contain not just one, but several random variables. Typically, the same
quantity is measured several times (either by having several individuals, or by repeating
the measurements).

We consider the measurements x1, x2, . . . , xn to be realizations of the random variables
X1, . . . ,Xn. This notation is often more convenient than interpreting the measurements
as n independent realizations of one random variable X. Often the quantity of interest is
some function of X1, . . . ,Xn:

Y = g(X1, . . . ,Xn) ,

where g : Rn → R is a map and Y a further random variable. The main example we have
in mind is the map

Xn = n−1
n∑

i=1

Xi .

Consider the following connection: if the xi are realizations of the random variables Xi,
then their arithmetic mean xn = n−1

∑n
i=1 xi is a realization of the random variable Xn.

Our interest lies in the distribution of the random variables Xn (knowing this distribution
is an important tool for later using statistics based on the arithmetic mean of data). To
this end, the following assumption is typically made:
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The i.i.d. assumption

We often assume that the random variables X1, . . . ,Xn are independent and identically
distributed. This is denoted by the following abbreviation:

X1, . . . ,Xn i.i.d. .

Example:

X1, . . . ,Xn i.i.d. ∼ N (µ, σ2)

means that the Xi’s are independent and all have the same normal distribution N (µ, σ2).

Characteristic Numbers and distribution of Xn

In this part, we shall assume that

X1, . . . ,Xn i.i.d. ∼ cumulative distribution function F.

Due to the second “i” in i.i.d. , each Xi has the same distribution and thus the same
mean and variance: E(Xi) = µ, Var(Xi) = σ2

X .

For Xn we then have:

E(Xn) = µ ,

Var(Xn) =
σ2

X

n
.

Thus the mean of Xn is the same as the mean of each individual Xi, while the variance
decreases in n. This leads to the following rule:

Law of large numbers: if X1, . . . ,Xn i.i.d. , then

Xn −→ µ (n → ∞) .

Example: Throwing a die n times
Regard Xi = outcome of the i-th dice throw. Then

Xn = average outcome of n throws

−→ µ = E(Xi) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5 (n → ∞).

In other words, the average outcome of a large number of dice throws is close to 3.5.

It generally is rather difficult to write down the distribution of Xn. One special case is
given by the normal distribution:

Xn ∼ N (µ, σ2
X/n) if X1, . . . ,Xn i.i.d. ∼ N (µ, σ2

X) .

Surprisingly, the above formula for the distribution still is approximately true even if the
individual Xi’s are not normally distributed. This we know from the following famous
theorem:
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Central limit theorem: if X1, . . . ,Xn i.i.d. , then

Xn ≈ N (µ, σ2
X/n) ,

an approximation that gets better as n gets larger. Furthermore the approximation is
better, the closer the distribution of Xi is to the normal distribution N (µ, σ2

X).

The standardized random variable

√
n(Xn − µ)

σX

also has the distribution N (0, 1).

4.6 Single-sample statistics (Stahel, ch. 8.3 – 8.5, 9.3)

We regard data x1, . . . , xn, which we consider to be realizations of the random variables
X1, . . . ,Xn i.i.d. . Two characteristic numbers of the variables Xi are E(Xi) = µ and
Var(Xi) = σ2

X . Typically these are unknown, as are other key quantities, and we wish to
make inferences about them based on the data.

Example: Aggregation of blood platelets (cf. Section 4.1)
Aggregation of blood platelets is an example of a so-called paired comparison, where each
test object is measured under two different sets of conditions. We are looking to see
whether aggregation is significantly different before and after smoking a cigarette. To
investigate this, we compute the differences xi = aggregation “after smoking” - aggregation
“before smoking” (i = 1, . . . , 11), and we obtain the sample we are interested in.

4.6.1 (Point) Estimates

The (point) estimates for mean and variance are:

µ̂ = n−1
n∑

i=1

Xi,

σ̂2
X =

1

n − 1

n∑

i=1

(Xi − Xn)2 .

Note that the estimates are written here as functions of the random variables X1, . . . ,Xn.
In particular, µ̂ and σ̂2

X are themselves random variables (we already discussed the distri-
butional properties of µ̂ in Section 4.5. As we consider the data xi to be realizations of
the random variables Xi, the estimates are precisely the arithmetic mean and empirical
variance of the data.

4.6.2 Testing µ

Example: Aggregation of blood platelets (cont.)
We would like to test whether there is a systematic difference in aggregation before and
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after smoking. As xi is precisely the difference in aggregation “before” and “after”, we
can regard the following test setup:

H0 : µ = 0, HA : µ 6= 0 .

To test the hypothesis about the parameter µ, we first assume that

X1, . . . ,Xn i.i.d. N (µ, σ2
X) . (4.3)

Later on, we will consider weakening this assumption.

The z-test

We assume the data x1, . . . , xn to be realizations of (4.3). Furthermore we assume that
the variance σ2

X is known.

Then the z-test of the parameter µ is as follows:

1. Specify the null hypothesis H0 : µ = µ0

and the alternative HA : µ 6= µ0 (or “<”, or “>”).

2. Fix a significance level α for the test (e.g. α = 0.05).

3. Consider the test statistic Xn. If the null hypothesis is true, then we know that (cf.
section 4.5):

Xn ∼ N (µ0, σ
2
X/n) .

The rejection region for the test statistic Xn when using the two-sided alternative HA :
µ 6= µ0 then is

K = (−∞, µ0 − Φ−1(1 − α/2)σX/
√

n] ∪ [µ0 + Φ−1(1 − α/2)σX/
√

n,∞) .

Thus some simple algebra shows that

PH0
[Xn ∈ K] = Pµ0

[|Xn − µ0| >
σX√

n
Φ−1(1 − α

2
)] = α ,

that is: the probability of a Type I error is exactly the significance level α.

4. Reject H0 if the arithmetic mean xn lies in K (if not, keep H0).

In summary, the z-test is as follows:

reject H0 if |
√

n(xn − µ0)

σX
| > Φ−1(1 − α/2) using HA : µ 6= µ0 ,

√
n(xn − µ0)

σX
< −Φ−1(1 − α) using HA : µ < µ0 ,

√
n(xn − µ0)

σX
> Φ−1(1 − α) using HA : µ > µ0 .
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Unlike the tests in chapter 3.2.2, the z-test uses several observations. However, these are
summarized by the realization xn of a test statistic – or even in the standardized form

z =

√
n(xn − µ0)

σX

(which is a function of the data). Apart from this minor difference, all concepts are the
same as in chapter 3.2.2. In particular, we need the distribution of the random variables
under the null hypothesis H0 : µ = µ0 in order to determine the rejection region K:

Z =

√
n(Xn − µ0)

σX
∼ N (0, 1) .

The t-test

As before, we assume the data to be realizations of (4.3). In practice, though, the assump-
tion that we know the variance σ is often unrealistic. We can however use the estimate

σ̂2
X =

1

n − 1

n∑

i=1

(Xi − Xn)2 .

This then leads to further uncertainty which must be taken into account.

The t-test uses the test statistic

t =

√
n(xn − µ0)

σ̂X
,

and the distribution of this statistic under the null hypothesis H0 : µ = µ0 is

T =

√
n(Xn − µ0)

σ̂X
∼ tn−1 ,

where tn−1 is a so-called t distribution with n − 1 degrees of freedom.

The tν distribution is a symmetric distribution around 0 which has heavier tails than the
standard normal distribution N (0, 1). For T ∼ tν , we have:

E(T ) = 0

Var(T ) =
ν

ν − 2
.

For large values of ν, tν is very similar to N (0, 1). In particular, the tν distribution
converges to the standard normal distribution N (0, 1) when ν → ∞. In Figure 4.7, the
density of a t5 distribution can be seen.

In summary, the t-test is as follows:

reject H0 : µ = µ0 if |t| = |
√

n(xn − µ0)

σ̂X
| > tn−1,1−α/2 using HA : µ 6= µ0 ,

t =

√
n(xn − µ0)

σ̂X
< −tn−1,1−α using HA : µ < µ0 ,

t =

√
n(xn − µ0)

σ̂X
> tn−1,1−α using HA : µ > µ0 ,
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where tn−1;α denotes the α quantile of the tn−1 distribution. This quantile can be found
in tables (see e.g. Stahel, Table 8.5.g, p. 187) or can be calculated using a computer. It is
somewhat larger than the α quantile of the standard normal distribution, and thus leads
to a slightly smaller rejection region. For large sample sizes n, however, the difference is
quite minimal (as tn−1 ≈ N (0, 1) when n is large).

Figure 4.7 illustrates the rejection region of the t-test using n = 6 observations. The
p-value for the two-sided alternative HA : µ 6= µ0 is computed as:

p − value = 2

(
1 − Ftn−1

(√
n|xn − µ0|

σ̂X

))
,

where Ftn−1
denotes the cumulative distribution function of the t distribution with n − 1

degrees of freedom.
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Figure 4.7: Density of the t distribution with 5 degrees of freedom (solid line) and of
the standard normal distribution (dashed line). The inner vertical lines mark the inner
boundaries of areas equal to half the p-value for hypothetical data with

√
6|x6−µ0|/σ̂X =

1.8; the outer vertical lines mark areas equal to 2.5% each.

Example (cont.) Aggregation of blood platelets (cf. Section 4.1)
Regard the differences xi = aggregation “before” - aggregation “after” (i = 1, . . . , 11),
and consider these to be realizations of N (µ, σ2

X). The null and alternative hypotheses of
interest are H0 : µ = µ0 = 0 and HA : µ > µ0 = 0. The value of the test statistic is

√
n(xn − µ0)

σ̂X
= 4.27 ,

and the relevant quantile for α = 0.05 is t10;0.95 = 1.812. Thus the outcome of the test is
to reject H0 at a level of 5%. The corresponding p-value is

PH0
[T > 4.27] = 1 − F10(4.27) = 0.00082 .

This means that the influence of smoking cigarettes on the aggregation of blood platelets
is highly significant.
If the one-sided alternative were replaced by the two-sided alternative HA : µ 6= µ0 = 0,
the result would be as follows: the relevant quantile for α = 0.05 is t10;0.975 = 2.23. The
outcome of the test would remain the same: reject H0 at a significance level of 5%. Here
the p-value is

PH0
[|T | > 4.27] = 2(1 − F10(4.27)) = 0.0016 .

44



4.6.3 Confidence intervals for µ

Like with count data as seen in chapter 3.2.3, the confidence interval consists of those
values of µ for which the corresponding test does not lead to the rejection of the null
hypothesis.

Once again we assume that the data are realizations of (4.3). This then leads to the
following two-sided confidence intervals (for which the corresponding tests are two-sided,
using the alternative hypothesis HA : µ 6= µ0) at level 1 − α:

xn ± Φ−1(1 − α/2)
σX√

n
if σX is known ,

xn ± tn−1,1−α/2
σ̂X√

n
if σX is unknown .

Example (cont.): Aggregation of blood platelets
We have 10 degrees of freedom and t10,0.975 = 2.23. The two-sided confidence interval for
the increase in aggregation of blood platelets after smoking a cigarette is thus (in terms
of increased percentage)

I = 10.27 ± 2.23 · 7.9761/
√

11 = [4.91, 15.63] .

In particular, the interval I does not contain zero: this means that the value µ = 0 is
incompatible with the data (as we already found by means of the t-test).

4.6.4 Testing µ for non-normal data

The z- and t-tests are optimal if the data are realizations of normal random variables, as
in (4.3). By optimality we mean that these tests have the best power (see below).

Now we will look at the more general situation in which the data are realizations of

X1, . . . ,Xn i.i.d. , (4.4)

where Xi has an arbitrary distribution. Denote a location parameter of the ditribution by
µ (e.g. µ = median of the distribution of Xi). Then the null hypothesis takes on the form
H0 : µ = µ0.

The power of a test

In chapter 3.2.2 we saw that there are two types of errors a test can make:

Type I error = erroneously rejecting H0, despite H0 being true,

and

Type II error (µ) = (erroneously) keeping H0, despite µ(∈ HA) being

the correct parameter value.

The probability of a Type I error is precisely α; instead of the Type II error (µ), we often
look at the power:

Power (µ) = 1 − P (Type II error (µ)) = P (rejecting H0 when µ is true).

45



For any µ ∈ HA, we can interpret the power(µ) as the probability of correctly discovering
HA when µ ∈ HA is the truth. For a test statistic T and its corresponding rejection region
K, the following then holds true:

Pµ0
(T ∈ K) = α ,

Power(µ) = Pµ(T ∈ K) .

The sign test

Regard the situation where the data are realizations of (4.4), but the individual Xi do not
follow a normal distribution. Here we denote µ = median of the distribution of Xi; for a
symmetric distribution µ = E(Xi) holds.

The sign test uses the following test statistic:

V = number of Xi for which (Xi > µ0) .

Note that V = number of positive signs of (Xi − µ0), which gives the test its name.

Regard the null hypothesis H0 : p = P (Xi > µ0) = 1/2 and the alternative hypothesis
HA : p 6= 1/2 (or one-sided versions of this). Thus under the null hypothesis H0, the test
statistic V has the following distribution:

V ∼ Binomial(n, 1/2) ,

and the sign test thus becomes a test of the parameter p of a binomial distribution.

The sign test test is always correct when the data are realizations of (4.4): i.e. the
probability of a Type I error is controlled by α, whatever the distribution of the Xi. This
is not true for the z- and t-tests. Due to the Central Limit Theorem, however, they do
keep the probability of a Type I error under control by α for large n at least.

However, the power of the z- and t-tests generally becomes rapidly worse when the Xi in
(4.4) no longer have a normal distribution. Thus the sign test often has a higher power
than the z- or t-test when the data are non-normal (and not approximately normal, either).
One drawback the sign test has, though, is that it does not use the information about how
far from µ0 the Xi are (see the above definition of the test statistic V ).

Example (cont.): Aggregation of blood platelets
The null hypothesis is H0 : µ = µ0 = 0. The realized value of the test statistic is then
v = 10, and the p-value obtained by using the one-sided alternative HA : µ > µ0 = 0 is
0.005 (for the t-test, the p-value was 0.00082).

The Wilcoxon test

The Wilcoxon test is a compromise which does not assume a normal distribution (unlike
the t-test), but which also makes better use of the data than the sign test.

The prerequisites for the Wilcoxon test are that the data be realizations of (4.4) and the
distribution of the Xi continuous and symmetric (symmetric density around µ = E(Xi)).
The p-value for a one- or two-sided alternative can be calculated using a computer.
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The Wilcoxon test is preferable in most cases; it often has a better power than both
the t-test and the sign test. Only when the data can be described extremely well by a
normal distribution does the t-test remain “completely suitable” for good data analysis;
this assumption or condition can be checked e.g. graphically, using a normal plot (cf.
chapter 4.4.6).

Example (cont.): Aggregation of blood platelets
The null hypothesis is H0 : µ = µ0 = 0. The p-value when using the one-sided alternative
HA : µ > µ0 = 0 is 0.002528.

4.7 Testing with two independent samples (Stahel, ch. 8.8)

One frequent aim in testing is to compare two methods (groups, experimental conditions,
treatments) with respect to the location of the distribution.

4.7.1 Paired and unpaired samples

For all applications, it is not only good evaluation of the data which is important, but also
good planning of the experiment. We need to ensure that any differences found are really
due the methods compared, rather than some other disturbance. The main principles to
ensure this are blocking and randomization.

Randomization means than the order of the experiments and allocation of the experimental
subjects to experimental conditions are both random. Then our observations (realizations
of random variables) are

x1, x2, . . . , xn under Condition 1 ,

y1, y2, . . . , ym under Condition 2 .

In general – but not always – we have m 6= n. Such random allocation of experimental
subjects to experimental conditions leads to what is called an unpaired sample.

Example:
Random allocation of 100 test patients to a group of 60 patients treated using a real drug,
and a group of 40 patients undergoing a treatment with placebos.

Example:
Data on latent heat of melting ice in chapter 4.1.

On the other hand, we have a paired sample if both experimental conditions are
applied to the same experimental subject. In such a case, the data have the following
structure:

x1, . . . , xn under Condition 1 ,

y1, . . . , yn under Condition 2 .

Of course this means that for paired samples, the sample size n must be the same for both
groups.

Example:
Blood platelet aggregation data, cf. chapter 4.1.
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4.7.2 Paired tests

To analyze paired comparisons, we use the differences insider each pair:

ui = xi − yi (i = 1, . . . , n) ,

which we consider to be realizations of iid. random variables U1, . . . , Un. Having no
difference between the two experimental conditions then simply means that E[Ui] = 0 (or
alternately: median(Ui) = 0). Tests of this hypothesis are described in chapter 4.6. Note
that the symmetricity required of the distribution of Ui for the Wilcoxon test is always
present under the null hypothesis that Xi and Yi are identically distributed.

4.7.3 Unpaired tests

For unpaired samples our data x1, . . . , xn and y1, . . . , ym (cf. chapter 4.7.1) can be regarded
as realizations of the following random variables:

X1, . . . ,Xn i.i.d. ,

Y1, . . . , Ym i.i.d. , (4.5)

where all the Xi are independent of all the Yj.

4.7.4 Two-sample t-test for equal variances

The simplest case can be solved using the following assumptions on (4.5):

X1, . . . ,Xn i.i.d. ∼ N (µX , σ2) ,

Y1, . . . , Ym i.i.d. ∼ N (µY , σ2) . (4.6)

Here the null hypothesis of interest is

H0 : µX = µY .

The two-sample t-test (assuming equal variances) rejects the null hypothesis H0 : µX = µY

if

|T | =
|Xn − Y m|

Spool

√
1/n + 1/m

> tn+m−2,1−α/2 using the alternative HA : µX 6= µY ,

T =
Xn − Y m

Spool

√
1/n + 1/m

> tn+m−2,1−α using the alternative HA : µX > µY ,

T =
Xn − Y m

Spool

√
1/n + 1/m

< −tn+m−2,1−α using the alternative HA : µX < µY .

Here

S2
pool =

1

n + m − 2

(
n∑

i=1

(Xi − Xn)2 +
m∑

i=1

(Yi − Y m)2

)
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is the pooled estimator of the common variance σ2. The choice of the denominator in the
test statistic T comes from the identity

Var(Xn − Y m) = σ2(
1

n
+

1

m
) . (4.7)

Proof of (4.7):
1. Xn and Y m are independent, as all the Xi are independent of all the Yj.
2. Due to the independence of Xn and Y m, the variance can be decomposed as
Var(Xn − Y m) = Var(Xn) + Var(−Y m) = Var(Xn) + Var(Y m).
3. We have Var(Xn) = σ2/n and Var(Y m) = σ2/m.
Thus applying Step 2, we obtain Var(Xn − Y m) = σ2(1/n + 1/m). �

We can derive the two-sample t-test in the following way. We replace the unknown differ-
ence µX −µY by its estimate Xn−Y m and ascertain whether or not this estimate is “close
to” 0 (if it were “far from” 0, this would be evidence for HA). To quantify this, we divide
by the square root of the variance estimate and use the quotient as our test statistic:

T =
Xn − Y m√

V̂ar(Xn − Y m)

=
Xn − Y m

Spool

√
1/n + 1/m

.

Under the assumption (4.6) and the null hypothesis µX = µY we then have

T ∼ tn+m−2 .

In this way we obtain the decision rule mentioned above, in a manner analagous to the
derivation of the one-sample t-test in chapter 4.6.2.

Example: Latent heat of melting ice, cf. chapter 4.1.
Let the null hypothesis be H0 : µX = µY , and the alternative hypothesis HA : µX 6= µY .
The characteristic numbers of this data set are: x13 = 80.021, y8 = 79.979, s2

pool =

7.2 10−4. Thus the test statistic is 3.47, which is clearly larger than the 97.5% quantile
t19,0.975 = 2.093.

4.7.5 Further two-sample tests

Two-sample t-test for non-matching variances

Now replace the assumption in (4.6) by the following:

X1, . . . ,Xn i.i.d. ∼ N (µX , σ2
X),

Y1, . . . , Ym i.i.d. ∼ N (µY , σ2
Y ).

This generalization of the two-sample t-test for unequal variances σ2
X 6= σ2

Y can be found
in the literature. It has also been widely implemented in statistical software.
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Two-sample Wilcoxon test (Mann-Whitney test)

The requirements of the two-sample Wilcoxon test, also known as the Mann-Whitney test,
on (4.5) are:

X1, . . . ,Xn i.i.d. ∼ arbitrary cumulative distribution function F (·) ,

Y1, . . . , Ym i.i.d. ∼ F (· − δ) .

This means that the distribution of Yj is the same as that of Xi up to a shift by δ, as:
P (Yj ≤ x + δ) = FY (x + δ) = FX(x + δ − δ) = FX(x) = P (Xi ≤ x).

A p-value of a two-sample Wilcoxon test can be calculated using a computer. For the
same reasons as in the one-sample case (cf. chapter 4.6.4), this Wilcoxon test is generally
preferable to the t-test.

4.8* Design of experiments (Stahel, ch. 14.1 - 14.2)

Carefully planning how to obtain the data is just as important as their subsequent eval-
uation. So far we have mainly discussed comparisons between two treatments (paired or
unpaired). When performing such comparisons, we should never compare a new treatment
with results obtained for the standard treatment in previous studies. Instead, we should
always use a control group in the same study, so that this group is as similar as possible
to the group receiving the new treatment. Then the question arises as to how to create
these groups. Similarly, a paired setup forces us to decide in which order to administer the
new treatments. Systematic differences between the groups – or systematic effects caused
by the choice of treatment order – can best be avoided by randomization, making the
allocation or the order random. Here random does not mean arbitrary, but using random
numbers.

Another important point is that where possible, the experiment should be double blind.
This means that neither the person administering the treatment nor the person receiving
it should know how the groups are allocated. This is necessary, as otherwise effects can
appear that influence the outcome of the experiment (e.g. that it is not the treatment
that is effective, but the effort put into it).

A randomized, double blind experiment is not always possible (out of ethical or practical
considerations). In such circumstances this makes the evaluation and interpretation of the
results vastly more difficult, as confounding effects cannot be ruled out in practice. One
famous example is the connection between smoking and lung cancer – which was disputed
for a long time, as the effects of genetic predisposition and lifestyle could not be ruled out.
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Chapter 5

Regression

5.1 Correlation und empirical correlation

The joint distribution of dependent random variables X and Y is generally quite com-
plicated; thus usually a simplifying characteristic number suffices for describing their
dependence. We define the covariance and the correlation between X and Y in the fol-
lowing way:

Cov(X,Y ) = E[(X − µX)(Y − µY )] (covariance)

Corr(X,Y ) = ρXY = Cov(X,Y )/(σXσY ) (correlation) ,

where σX =
√

Var(X), and similarly for σY .

The correlation ρXY of X and Y is a dimension-less, normalized number
taking on values ρXY ∈ [−1, 1].

Correlation measures the strength and direction of the linear dependence between X
und Y . Its extreme values ±1 are only attained under very special conditions:

Corr(X,Y ) = +1 if and only if Y = a + bX for some a ∈ R and b > 0,

Corr(X,Y ) = −1 if and only if Y = a + bX for some a ∈ R and b < 0.

Furthermore the following implication holds true:

X and Y independent =⇒ Corr(X,Y ) = 0. (5.1)

The converse of this is generally not true.

5.1.1 Empirical correlation

In Chapter 4.2.2 and Figure 4.3 we saw an example of data (x1, y1), . . . , (xn, yn) that we
could consider to be realizations of iid. random vectors (X1, Y1), . . . , (Xn, Yn).

In this situation, the empirical correlation is

Ĉorr(X,Y ) = ρ̂XY =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
.
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This has the following properties analogous to the properties of correlation:

ρ̂XY ∈ [−1, 1] ,

ρ̂XY = +1 ⇔ yi = a + bxi for all i = 1, . . . , n and for some a ∈ R and b > 0 ,

ρ̂XY = −1 ⇔ yi = a + bxi for all i = 1, . . . , n and for some a ∈ R and b < 0 .

5.2 Simple linear regression

Consider the following example from chemistry. The dimerization of 1,3-butadiene pro-
ceeds according to a second-order reaction model, and can thus be characterized by the
equation d

dtC(t) = −κC(t)2. Here C denotes the partial pressure of the input, and t is
time. This equation admits solutions of the form

1

C(t)
=

1

C(0)
+ κt .

Figure 5.1 shows measurements taken at different times over the course of the reaction.
The above equation shows that the reciprocal of the partial pressure should exhibit a linear
dependence on time. Due to random measurement errors and small systematic deviations
from the simple model, the points do not lie perfectly on a line.
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Figure 5.1: Partial pressure of butadiene (left), and its scaled reciprocal 1000/(partial
pressure) (right), plotted against time

5.2.1 The simple linear regression model

In the example above, we used data

(x1, y1), . . . , (xn, yn) ,

where xi denotes the time at which the i-th measurement was taken, and yi the reciprocal
of the partial pressure measured then. We can consider these data as realizations of the
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following model:

Yi = h(xi) + Ei (i = 1, . . . , n) ,

E1, . . . , En i.i.d. , E(Ei) = 0, Var(E i)) = σ2 .

Here the variable Y is the response variable, and the variable x is the explanatory
variable, predictor variable or covariate. The random variables Ei are often termed
error terms or noise variables. They show that the connection between explanatory and
response variables is not an exact one. The explanatory variables xi (i = 1, . . . , n) are
deterministic, while the response variables Yi are actual random variables (due to the Ei).

Possible models for the function h(·) include:

h(x) = β0 + β1x : simple linear regression ,

h(x) = β1x : simple linear regression through the origin .

We mostly consider the more general model, which includes an intercept β0. This model is
illustrated in Figure 5.2, where the distribution of the error terms is specified as N (0, 0.12).

1.6 1.8 2.0

0

1

x

Y Prob- ability density

Figure 5.2: Illustration of the regression model Yi = 4 − 2xi + Ei, where Ei ∼ N (0, 0.12),
for three observations

5.2.2 Parameter estimation

In a simple linear regression, the unknown model parameters are β0, β1 and the error
variance σ2. The method of least squares gives us the following estimates:

β̂0, β̂1 minimize
n∑

i=1

(Yi − (β0 + β1xi))
2 .

This optimization problem admits a unique solution:

β̂1 =

∑n
i=1(Yi − Ȳn)(xi − x̄n)∑n

i=1(xi − x̄n)2

β̂0 = ȳn − β̂1x̄n .
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The least-squares principle gives us unbiased estimates of β0 and β1, i.e.:

E(β̂0) = β0 , E(β̂1) = β1 .

This means the estimates exhibit no systematic error (for example, they do not system-
atically overestimate β1, as otherwise we would have E(β̂1) > β1).

To estimate the error variance σ2 we can use the concept of residuals. If we could observe
realizations of the error terms Ei, we could apply the empirical estimate of variance to
these to approximate σ. As we do not have realizations of the Ei, we approximate these
using the residuals:

Ri = Yi − (β̂0 + β̂1xi) (i = 1, . . . , n) .

Since Ei = Yi − (β0 +β1xi), the approximation Ri ≈ Ei is a meaningful one. The estimate
of variance is then:

σ̂2 =
1

n − 2

n∑

i=1

R2
i . (5.2)

Note that (for simple linear regression with intercept β0,) we have the identity
∑n

i=1 Ri =
0. Then the variance estimate in (5.2) is the empirical variance for a sample (cf. chapter
4.6.1), but with the factor 1/(n−1) replaced by a factor 1/(n−2). This factor follows the
rule of thumb which says it should be 1/(n − number of parameters), where the variance
parameter to be estimated is not counted towards the number of parameters (thus here
the parameters that count are β0 and β1).

If the dataset contains realizations yi (i = 1, . . . , n), the estimates are computed using
the yi instead of the Yi. The realizations of the residuals, for example, then become
ri = yi − (β̂0 − β̂1xi).

5.2.3 Tests and confidence intervals

In this section we shall discuss the 2nd and 3rd key questions (cf. chapter 3.1) in the
context of simple linear regression. In the course of this discussion we shall aim at more
than just finding the best-fitting regression line.

Applying the t-Test in regression

As an example, consider the following dataset. The average daily temperature (x) and
the average daily ozone concentration (Y ) were measured on n = 111 days. The resulting
data and the fitted regression line β̂0 + β̂1x are shown in Figure 5.2.3. The key practical
question of interest is: does the temperature influence the concentration of ozone. We can
translate this question into a testing problem:

H0 : β1 = 0 ,

HA : β1 6= 0 .

“By default” here, we carry out a two-sided test: the t-test of the slope in a simple linear
regression.
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Figure 5.3: Scatterplot and fitted regression line for the dataset of ozone vs. temperature.

We assume here that

E1, . . . , En i.i.d. N (0, σ2) . (5.3)

The test statistic is

β̂1

ŝ.e.(β̂1)
,

ŝ.e.(β̂1) =

√
V̂ar(β̂1) =

σ̂√∑n
i=1(xi − x)2

.

Under the null hypothesis and the assumption of normally distributed errors (5.3), we
have:

T ∼ tn−2 under the null hypothesis H0 : β1 = 0 ,

and we can compute the p-value of this two-sided t-test like in chapter 4.6.2 (using n − 2
instead of n − 1 degrees of freedom). This p-value is also given by standard statistical
software.

In the same way we can obtain a test of H0 : β0 = 0 under the two-sided alternative
HA : β0 6= 0. The p-value here – under the normal assumption (5.3) – is also given by
the standard statistical software packages.

When a simple linear regression is fitted for the ozone vs. temperature data using the
software package R, the following output is produced:

Call:

lm(formula = ozone ~ temperature)
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Residuals:

Min 1Q Median 3Q Max

-1.49016 -0.42579 0.02521 0.36362 2.04439

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.225984 0.461408 -4.824 4.59e-06 ***

temperature 0.070363 0.005888 11.951 < 2e-16 ***

---

Residual standard error: 0.5885 on 109 degrees of freedom

Multiple R-Squared: 0.5672,Adjusted R-squared: 0.5632

F-statistic: 142.8 on 1 and 109 DF, p-value: < 2.2e-16

The second column in the table “Coefficients” describes the point estimate β̂i (i = 0, 1);
the third column of this table gives the estimated standard error ŝ.e.(β̂i) (i = 0, 1); and
the fourth column lists the values of the test statistics β̂i/ŝ.e.(β̂i) (i = 0, 1), which are the
quotients of the second and the third column. The fifth column then gives us the p-values
for H0 : βi = 0 and HA : βi 6= 0 (i = 0, 1). We moreover find an estimate σ̂ of the error
standard deviation under “Residual standard error” – here the “degrees of freedom” are
n − 2.

Confidence intervals

On the basis of the normality assumption, we obtain the following two-sided confidence
intervals for βi (i = 0, 1) at level 1 − α:

β̂0 ± ŝ.e.(β̂0)tn−2;1−α/2 for β0 ,

β̂1 ± ŝ.e.(β̂1)tn−2;1−α/2 for β1 .

5.2.4 R2, the coefficient of determination

The goodness of fit of a regression model can be quantified by the so-called coefficient of
determination, which we denote R2. To do this, we use an equation that describes the
relationship between several sources of variation. Writing ŷi = β̂0 + β̂1xi for the fitted
value at xi, we have

n∑

i=1

(yi − y)2

︸ ︷︷ ︸
SSY

=

n∑

i=1

(yi − ŷi)
2

︸ ︷︷ ︸
SSE

+

n∑

i=1

(ŷi − y)2

︸ ︷︷ ︸
SSR

. (5.4)

Here SSY describes the total variation of the response variables (without regarding the
influence of the explanatory variables x), SSE is the residual squared error, and SSR

denotes the variation explained by the regression (through the influence of the explanatory
variables x). The coefficient of determination is then defined in the following way:

R2 =
SSR

SSY
, (5.5)
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and it quantifies the proportion of total variation explained by the regression. From
Equation 5.4 we see that 0 ≤ R2 ≤ 1; if R2 is close to 1, the regression model explains
much of the variation and is thus good; if R2 ≈ 0, however, the model is not of much use.
In standard computer output, the value of R2 can generally be found under the description
“Multiple R-squared”.

For simple linear regression we have

R2 = ρ̂2
XY

in general, i.e. R2 ist just the square of empirical correlation.

5.2.5 General procedure for simple linear regression

Put simply, simple linear regression can be carried out as follows:

1. Fit the regression line, i.e. compute the point estimate β̂0, β̂1.

2. Test whether the explanatory variable x influences the response Y at all, using a
t-test with H0 : β1 = 0 and Ha : β1 6= 0. If the test finds nothing significant (i.e. if
H0 is not rejected, but kept), the problem is “not of interest in its current form”.

3. Test whether the regression line goes through the origin, using a t-test with H0 :
β0 = 0 and HA : β0 6= 0. If the test finds nothing significant (i.e. H0 is kept), then
use the smaller model containing no intercept.

4. Calculate confidence intervals for β0 and β1, where desired.

5. Calculate R2, the coefficient of determination. In some ways this is a more informal
(and extra) quantification than the test in point 2.

6. Check the model assumptions by analyzing the residuals. This key step is described
at length in chapter 5.2.6.

5.2.6 Analysis of residuals

In this part we shall decribe graphical methods that can be used to check the model
assumptions of simple linear regression on the basis of the known residuals ri(i = 1, . . . , n).
These model assumptions are as follows (in order of importance):

1. E(Ei) = 0.
Thus E(Yi) = β0 + β1xi, i.e. there is no bias in the model.
A failure of this assumption to hold might mean e.g. that x and Y exhibit non-linear
dependence.

2. E1, . . . , En i.i.d.
This assumption could be broken by differences in the error variances, i.e. Var(Ei) =
σ2

i with different σ2
i for different i = 1, . . . , n. Alternatively, any problems here might

also stem from the errors being correlated.

3. E1, . . . , En i.i.d. N (0, σ2).
Deviations from this assumptions can be caused by heavy-tailed error distributions.
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The Tukey-Anscombe plot

The most important plot in the analysis of residuals is the plot of residuals ri against
fitted values ŷi, known as the Tukey-Anscombe Plot.
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Figure 5.4: Scatterplot of depth and speed of flow (above left), Tukey-Anscombe plot for
simple linear regression (above right), for square regression (cf. chapter 5.3.1) (below left)
and for simple linear regression using the logarithms log(Y ) and log(x) (below right).

Ideally the points in a Tukey-Anscombe plot are evenly scattered around zero.
Deviations from this:
- Conical increase of the scattered residuals as ŷi increases

Maybe transform the response variable by taking its logarithm (if the Yi are positive),
i.e. use the new model

log(Yi) = β0 + β1xi + εi .

- Outliers
Maybe use robust regression methods (see the literature for this)

- Irregular structure
This indicates that there may be a non-linear connection between the variables
Maybe transform the response and/or explanatory variables (also cf. the example given

in Figure 5.1).

The Tukey-Anscombe plot for the ozone data is given in Figure 5.5.

Non-linear dependencies can of course occur in practice; they indicate a mistake in the
specification of the regression function. This problem can be combatted by including
further explanatory variables in the regression (e.g. quadratic terms as in chapter 5.3.1)
or by transforming the response or explanatory variables as above. One simple example is
shown in Figure 5.4, where the depth of streams is compared to the speed at which they
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flow. When doing a simple linear regression, the Tukey-Anscombe plot shows a clearly
non-linear structure – which disappears after a quadratic term is added (cf. chapter 5.3.1)
or if logarithms are taken of both variables (i.e. a x and Y are described by the power
model

log(Yi) = β0 + β1 log(xi) + εi (i = 1, . . . , n) .

Howver, this example contains insufficient data for distinguishing between these two mod-
els. The non-linear dependence here is naturally also visible upon a close look at the
original scatterplot. In most cases, though, non-linear behaviour is easier to spot in the
Tukey-Anscombe plot.

The serial correlation plot

To check the assumption that the errors E1, . . . , En are independent, the following plot
can be used: plot the residuals ri against their indices i.

Ideally the points are evenly scattered around zero.
Deviations from this:
- Large areas in which the residuals are all positive or all negative

The point estimates are still fine, but the tests and confidence intervals are no longer
correct

Maybe use regression methods that allow for correlation between errors (see the literature
for this)

The serial correlation plot of residuals for the ozone dataset is shown in Figure 5.5.

The normal plot

The normal plot (cf. chapter 4.4.6) is useful for checking the assumption of normality
(5.3).

Ideally the normal plot contains a more or less straight line
Deviations from this:
- Not a straight line

Maybe use robust regression (see the literature for this)

The normal plot for the ozone dataset is shown in Figure 5.5.

Finding a good model

Often many models are looked at, and fitted, in a kind of “workflow-feedback” procedure.
We start with an initial model, analyze its residuals and then use the results to modify
the model. The modified model (still assumed to be linear, although perhaps with trans-
formed variables) is then fitted once more using linear regression, and this new model is
then evaluated itself using the analysis of residuals. This procedure is repeated until a
“satisfactory” model has been found and fitted.
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Figure 5.5: Ozone data: scatterplot with fitted regression line (above left); Tukey-
Anscombe plot (above right); normal plot (below left); serial correlation plot (below right).

5.3 Multiple linear regression

Often there are several predictor variables xi,1, . . . , xi,p−1 (p > 2).

5.3.1 The multiple linear regression model

The multiple linear regression model is the following:

Yi = β0 +

p−1∑

j=1

βjxi,j + Ei ,

E1, . . . , En i.i.d. , E(Ei) = 0, Var(E i) = σ2 .

As with simple linear regression we assume that the predictor variables are deterministic.
It often helps to have this model written with matrices:

Y = X × β + E ,
n × 1 n × p p × 1 n × 1

(5.6)

where X is an (n × p) matrix with columns (1, 1, . . . , 1)T , (x1,1, x2,1, . . . , xn,1)
T up to

(x1,p−1, x2,p−1, . . . , xn,p−1)
T .

Examples of multiple linear regression include:
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Simple linear regression: Yi = β0 + β1xi + Ei (i = 1, . . . n).

p = 2 X =




1 x1

1 x2
...

...
1 xn


 , β =

(
β0

β1

)
.

Quadratic regression: Yi = β0 + β1xi + β2x
2
i + Ei (i = 1, . . . n).

p = 3, X =




1 x1 x2
1

1 x2 x2
2

...
...

...
1 xn x2

n


 , β =




β0

β1

β2


 .

Note that the regression function is quadratic in the predictors xi, but linear in the
coefficients βj – and is thus a special case of the multiple linear regression model.

Regression with transformed predictor variables:
Yi = β0 + β1 log(xi2) + β2 sin(πxi3) + Ei (i = 1, . . . n).

p = 3, X =




1 log(x12) sin(πx13)
1 log(x22) sin(πx23)
...

...
...

1 log(xn2) sin(πxn3)


 , β =




β0

β1

β2


 .

Once again the model is linear in the coefficients βj and non-linear in the predictors xij .

5.3.2 Parameter estimation and the t-test

Similarly to simple linear regression, multiple linear regression mainly uses the method of
least squares:

β̂0, β̂1, . . . , β̂p−1 minimize

n∑

i=1

(Yi − (β0 + β1xi,1 + . . . + βp−1xi,p−1))
2 .

If p < n, the unique solution of this optimization problem has an explicit form:

β̂ = (XT X)−1XT Y ,

where β̂ is the p × 1 vector (β̂0, β̂1, . . . , β̂p−1)
T and X,Y are as in (5.6).

The estimate of error variance is

1

n − p

n∑

i=1

R2
i , Ri = Yi − (β̂0 +

p−1∑

j=1

β̂jxi,j) .

Assuming normality of the errors as in (5.3), t-tests of the following hypotheses can be
carried out like for simple linear regression:

H0,j : βj = 0; HA,j : βj 6= 0 (j = 0, . . . , p − 1) .

The main distinction to be made lies in the interpretation of the parameters:
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βj measures the linear effect
of the jth predictor variable on the response variable Y

after the linear effects of all other variables on Y
have been eliminated. (j = 1, . . . , p − 1)

In particular, this implies that the coefficient βj cannot be found by merely by carrying
out a single simple linear regression of Y on the jth predictor variable.

Example: Take p = 3 and 2 predictor variables. We assume that the predictor variables
have high empirical correlation. Then it may well happen that neither H0,1 : β1 = 0 nor
H0,2 : β2 = 0 is rejected, even though at least one of the coefficients β1 and β2 is non-zero.
To prevent the erroneous conclusion being drawn that none of the predictor variables has
an effect on the response variable, we must use the so-called F-test.

5.3.3 The F-test

The (global) F-test gives a quantitative answer to the question whether or not at least one
of the predictor variables has a relevant (regression) effect on the response variable. The
(global) F-test looks at the following null hypothesis:

H0 : β1 = . . . = βp−1 = 0

HA : at least one βj 6= 0 (j = 1, . . . , p − 1) .

The p-value of the (global) F-test is given by the computer output as the “F statistic”.

5.3.4 R2, the coefficient of determination

For multiple linear regression the coefficient of determination, R2, is defined using the
formula (5.5) (by means of the decomposition in (5.4). However the interpretation of this
coefficient in terms of a squared sample covariance between the response and the predictor
variables is longer possible here.

5.3.5 Analysis of residuals

The analysis of residuals proceeds in a completely analogous way to chapter 5.2.6. The
general procedure for multiple linear regression is like in chapter 5.2.5, using the F-test
after Step 1.

5.3.6 Strategies for data analysis: a closing example

We regard an example in which the quality of asphalt is analyzed using 6 explanatory
variables.

y = RUT : "rate of rutting" = change of rut depth in inches per million

wheel passes

x1 = VISC : viscosity of asphalt

x2 = ASPH : percentage of asphalt in surface course
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x3 = BASE : percentage of asphalt in base course

x4 = RUN : ’0/1’ indicator for two sets of runs.

x5 = FINES: 10* percentage of fines in surface course

x6 = VOIDS: percentage of voids in surface course

The data are visualized by pairwise scatterplots in Figure 5.6. The dependencies of these
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Figure 5.6: Pairwise scatterplots for the asphalt datset. The response variable is “RUT”.

variables are more linear if the response variable “RUT” and the predictor variable “VISC”
are both replaced by their respective logarithms.

y = LOGRUT : log("rate of rutting") = log(change of rut depth in inches

per million wheel passes)

x1 = LOGVISC : log(viscosity of asphalt)

x2 = ASPH : percentage of asphalt in surface course

x3 = BASE : percentage of asphalt in base course

x4 = RUN : ’0/1’ indicator for two sets of runs.

x5 = FINES: 10* percentage of fines in surface course

x6 = VOIDS: percentage of voids in surface course

This transformed dataset is plotted in Figure 5.7.

Using the software package R, we fit a multiple linear model, and obtain the following
output:

Call:

lm(formula = LOGRUT ~ ., data = asphalt1)

Residuals:
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Figure 5.7: Pairwise scatterplots for the transformed asphalt dataset. The response vari-
able is “LOGRUT”, which is the logarithm of the original response variable “RUT”. The
predictor variable “LOGVISC” is the logarithm of the original predictor variable “VISC”.

Min 1Q Median 3Q Max

-0.48348 -0.14374 -0.01198 0.15523 0.39652

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.781239 2.459179 -2.351 0.027280 *

LOGVISC -0.513325 0.073056 -7.027 2.90e-07 ***

ASPH 1.146898 0.265572 4.319 0.000235 ***

BASE 0.232809 0.326528 0.713 0.482731

RUN -0.618893 0.294384 -2.102 0.046199 *

FINES 0.004343 0.007881 0.551 0.586700

VOIDS 0.316648 0.110329 2.870 0.008433 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2604 on 24 degrees of freedom

Multiple R-Squared: 0.9722, Adjusted R-squared: 0.9653

F-statistic: 140.1 on 6 and 24 DF, p-value: < 2.2e-16

We can see that the predictor variables “LOGVISC”, “ASPH” and “VOID” are significant
or even highly significant; furthermore the predictor variable “RUN” is merely weakly
significant. The F-test is extremely significant, and R2 is quite close to 1. Here we are
using n − p = 24 degrees of freedom, where p = 7, and n = 31. In Figure 5.8 we see the
analysis of residuals, summarized by the Tukey-Anscombe and normal plots: evidently the
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assumption of normality for the errors is a sensible one. The Tukey-Anscombe plot exhibits
some systematic variation, which may be due to underlying non-linearity. As however R2

already is quite close to 1, we can still conclude that the multiple linear regression model
can explain very much of the total variation.
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Figure 5.8: Tukey-Anscombe (above) and normal plots (below) for the asphalt dataset
containing the transformed variables “LOGRUT” and “LOGVISC”.

Without logarithmic transformations, i.e. using the untransformed model from Figure 5.6,
the coefficient of determination is R2 = 0.7278, which is considerably worse than that of
the transformed model.
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