
Dr. M. Mächler Computational Statistics FS 2010

Exercise Series 3

1. In this exercise we generate artificial data according to the model Yi = m(xi) + ǫi. i =
1, . . . , 101.

m(x) = x + 4cos(7x)

ǫ1, . . . , ǫ101 are i.i.d. N (0, 1). In a) and b) we consider the situation with equidistant xi. In
c) we are using non-equidistant xi.

a) Carry out a simulation where you simulate data according to the model above a 1000
times. Use 101 equidistant xi between −1 and 1. For each dataset compute the
Nadaraya-Watson, the Local Polynomial and the Smoothing Splines regression esti-
mators at every xi, i = 1, . . . , 101. To get (approximately) the same degrees of freedom
use span = 0.2971339 for loess and spar = 0.623396 for smooth.spline.

At each position xi compute the empirical bias (mean over all simulations minus true

value) and variance. Plot these quantities against xi for each estimator. If you save
each of these quantities in a 101 × 3 matrix you can do the plots with matplot. Use
apply to get the means and the variances.

R-Hints:

101 equidistant points between -1 and 1

x <- seq(-1, 1, length = 101)

set.seed(79)

Save the results of each estimator in a matrix

Rows are x-positions, columns are simulation runs

nw = Nadaraya-Watson, lp = Local Polynomial, ss = Smoothing Splines

estnw <- estlp <- estss <- matrix(0, nrow = 101, ncol = nrep)

for(i in 1:nrep){

Simulate y-values

y <- m(x) + rnorm(length(x))

Get estimates for the mean function

estnw[,i] <- ksmooth(x, y, kernel = "normal", bandwidth = 0.2, x.points = x)$y

estlp[,i] <- predict(loess(...), newdata = x)

estss[,i] <- predict(smooth.spline(...), x = x)$y

}

b) Calculate the corresponding estimated standard error for each simulation run, x-value
and estimator. To manually calculate the estimated standard errors we need the cor-
responding hat matrices (see lecture notes). We can easily get them by using linear
algebra. If S is the hat matrix, the jth column is given by Sej, where ej is the jth

standard basis vector. The hat matrices only depend on the design points xi and they
do not have to be calculated for each simulation run.

You can use your script file from a) but you have to add some extra commands to the
for-loop.

Computational Statistics (FS 2010) — Exercise Series 3 — 2

How many times does the pointwise confidence interval at x = 0.5 contain the true value
m(0.5), i.e., what is the so-called “coverage rate”? How often does the confidence band
for all points simultaneously contain all true values?

R-Hints:

The hat matrices only have to be calculated once, they only depend on x

Snw <- matrix(0, nrow = 101, ncol = 101)

Calculate the hat matrix for the Nadaraya-Watson kernel estimator

In <- diag(101) ## identity matrix

for(j in 1:101){

y <- In[,j]

Snw[,j] <- ksmooth(x, y, kernel = "normal", bandwidth = 0.2, x.points = x)$y

}

Add the following commands to the for-loop:

Estimated standard errors, trace(Mat)=sum(diag(Mat))

sigma2nw <- sum((...)^2) / (length(y) - sum(diag(Snw)))

senw[,i] <- sqrt(sigma2nw * diag(...))

Matrix multiplication is %*% in R

You may also want to consider crossprod() or tcrossprod()

c) Repeat a) and b) but with non-equidistant x-points. Use the R-commands below to
generate the points. You can use rug(x) to visualize the distribution in the plots in a)
and b).

To use the same degrees of freedom you should now use span = 0.3365281 in loess

and spar = 0.7162681 in smooth.spline.

R-Hints:

set.seed(79)

x <- sort(c(0.5, -1 + rbeta(50, 2, 2), rbeta(50, 2, 2)))

Preliminary discussion: Friday, March 19.

Deadline: Friday, March 26.

