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Solution to Series 6

1. a) > ## load data

> load("fitness.rda")

> ## analyze the variables

> par(mfrow=c(2,4))

> for (i in 1:7) hist(fitness[,i], col="limegreen", main=names(fitness)[i])
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As you can see from the histograms, there are no variables that are strongly skewed to the right and/or
have a relative scale with a large range of values. Therefore, we will not apply any transformations
and there are no other apparent issues.

> par(mfrow=c(1,1))

> library(ellipse)

> plotcorr(cor(fitness[,-3]), cex.lab = 0.75, mar = c(1,1,1,1))
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The analysis of the pairwise correlations should be done without the target variable. As we can see
from the above plot, there is a strong positive correlation between the running pulse and the maximal
pulse. The remaining variables do not show strong pairwise correlations.

b) > ## fit model

> fit <- lm(oxy ~ ., data=fitness)

> summary(fit)
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Call:

lm(formula = oxy ~ ., data = fitness)

Residuals:

Min 1Q Median 3Q Max

-5.4026 -0.8991 0.0706 1.0496 5.3847

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 102.93448 12.40326 8.299 1.64e-08 ***

age -0.22697 0.09984 -2.273 0.03224 *

weight -0.07418 0.05459 -1.359 0.18687

runtime -2.62865 0.38456 -6.835 4.54e-07 ***

rstpulse -0.02153 0.06605 -0.326 0.74725

runpulse -0.36963 0.11985 -3.084 0.00508 **

maxpulse 0.30322 0.13650 2.221 0.03601 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.317 on 24 degrees of freedom

Multiple R-squared: 0.8487, Adjusted R-squared: 0.8108

F-statistic: 22.43 on 6 and 24 DF, p-value: 9.715e-09

c) > ## fit model

> fit <- lm(oxy ~ ., data=fitness)

> source("resplot.R")

> resplot(fit)
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Leverage Plot

There are no systematic errors. There are two large residuals, one of which is positive, the other one
is negative. The assumption of constant variance is at the border of being satisfied. So while the
residual plots do not look perfect, the model assumptions seem to be fulfilled to a sufficient degree.

> ## partial residual plots

> library(car)

> crPlots(fit, pch=20, layout = c(2,3), cex.lab = .75)
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Component + Residual Plots

The two observations with the large residuals cause deviations in the partial residual plots. In this
case, however, we would not diagnose the presence of a systematic deviation. Therefore, we conclude
that the predictors have been entered into the model in the correct form.

d) > ## multicollinearity

> library(faraway)

> vif(fit)

age weight runtime rstpulse runpulse maxpulse

1.512836 1.155329 1.590868 1.415589 8.437274 8.743848

The VIFs of runpulse and maxpulse indicate the presence of critical multicollinearity. This is not
surprising given the large pairwise correlation between running pulse and maximal pulse.

e) (i) Amputation

> ## fitted values

> f.o <- fitted(fit)

> ## Amputation - leave out maxpulse

> fit <- lm(oxy ~ age + weight + runtime + rstpulse + runpulse, data=fitness)

> resplot(fit)
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Leverage Plot

Since the high multicollinearity stems from the large pairwise correlation between running pulse and
maximal pulse, one of these two variables should be excluded from the model. We recommend to
leave out the maximal pulse due to background knowledge.

> crPlots(fit, pch=20, layout = c(2,3), cex.lab = .75)

> vif(fit)
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age weight runtime rstpulse runpulse

1.408289 1.116150 1.578518 1.413545 1.388799

> f.i <- fitted(fit)
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Component + Residual Plots

The resulting model does not show a systematic error, the predictors seem to be in the correct form
and there is no high multicollinearity.

(ii) Creating new variables

> ## transformation

> par(mfrow=c(1,2))

> hist(fitness$maxpulse-fitness$runpulse, col="limegreen", main = "maxpulse - runpulse")

> hist(fitness$runpulse/fitness$maxpulse, col="limegreen", main = "runpulse/maxpulse")

> my.fitness <- fitness[,-7]

> my.fitness$intensity <- fitness$runpulse/fitness$maxpulse
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Either runpulse or maxpulse needs to be adjusted. We leave the running pulse in the model and
substitute the maximal pulse by either maxpulse-runpulse or runpulse/maxpulse. Since the latter
shows less skew in the histogram, we choose to use the quotient.

> fit <- lm(oxy ~ ., data=my.fitness)

> resplot(fit)
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> crPlots(fit, pch=20, layout = c(2,3), cex.lab = .75)

> vif(fit)

age weight runtime rstpulse runpulse intensity

1.500884 1.152036 1.594347 1.414005 1.961997 1.615894

> f.ii <- fitted(fit)
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(iii) Ridge regression

> ## ridge regression

> library(MASS)

> fit <- lm.ridge(oxy ~ ., data=fitness, lambda=seq(0,5, by=0.1))

> select(fit)

modified HKB estimator is 0.5966403

modified L-W estimator is 0.9212768

smallest value of GCV at 0.5

First we need to estimate the penalty parameter λ. Note that the algorithm allows to estimate the
ridge regression parameters for many values of λ simultaneously. Subsequently, the optimal value is
determined via Generalized Cross Validation (GCV). Here, it is 0.5.

As the function does not allow us to extract the fitted values, these need to be computed from
the available output. The design matrix is available with the command model.matrix() when
performing an OLS regression. The estimated coefficients can be obtained from the ridge regression
output. Finally, multiplying these two quantities yields the fitted values.
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> matplot(fit$lambda, t(fit$coef), lty=1, type="l", col=rainbow(6))

> fit <- lm.ridge(oxy ~ ., data=fitness, lambda=0.5)

> fit

age weight runtime

104.93110913 -0.23671702 -0.06904551 -2.60778598

rstpulse runpulse maxpulse

-0.02763130 -0.30629734 0.23089222

> mm <- model.matrix(lm(oxy ~ ., data=fitness))

> f.iii <- mm%*%coef(fit)
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Pairwise comparison of fitted values

> ## comparison of the fitted values

> df <- data.frame(f.i, f.ii, f.iii)

> pairs(df)

f.i
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When using amputation the fitted values are notably different from the other approaches. This
indicates that we do lose some precision when excluding a variable from the set of predictors. The
other two approaches yield very similar fitted values – even though the approaches are very different
from a theoretical perspective, they do yield almost identical results.

f) > ## backward elimination using the p-values

> fit <- lm(oxy ~ ., data=my.fitness)

> drop1(fit, test="F")

Single term deletions



7

Model:

oxy ~ age + weight + runtime + rstpulse + runpulse + intensity

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 131.09 58.698

age 1 29.417 160.50 62.974 5.3860 0.02912 *

weight 1 9.440 140.53 58.853 1.7283 0.20105

runtime 1 249.086 380.17 89.706 45.6045 5.516e-07 ***

rstpulse 1 0.744 131.83 56.873 0.1362 0.71530

runpulse 1 5.764 136.85 58.032 1.0554 0.31452

intensity 1 24.244 155.33 61.958 4.4388 0.04577 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> ## remove rstpulse

> fit <- update(fit, .~.-rstpulse)

> drop1(fit, test="F")

Single term deletions

Model:

oxy ~ age + weight + runtime + runpulse + intensity

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 131.83 56.873

age 1 28.79 160.62 60.997 5.4604 0.02776 *

weight 1 8.98 140.81 56.915 1.7023 0.20387

runtime 1 320.50 452.33 93.093 60.7798 3.75e-08 ***

runpulse 1 6.36 138.18 56.333 1.2052 0.28275

intensity 1 24.41 156.23 60.139 4.6283 0.04130 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> ## remove runpulse

> fit <- update(fit, .~.-runpulse)

> drop1(fit, test="F")

Single term deletions

Model:

oxy ~ age + weight + runtime + intensity

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 138.18 56.333

age 1 22.44 160.62 58.997 4.2220 0.050081 .

weight 1 11.19 149.37 56.746 2.1051 0.158771

runtime 1 370.78 508.97 94.750 69.7648 7.806e-09 ***

intensity 1 56.93 195.11 65.027 10.7109 0.003006 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> ## remove weight

> fit <- update(fit, .~.-weight)

> drop1(fit, test="F")

Single term deletions

Model:

oxy ~ age + runtime + intensity

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 149.37 56.746

age 1 15.92 165.29 57.885 2.8773 0.101336

runtime 1 422.45 571.82 96.360 76.3609 2.357e-09 ***
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intensity 1 51.34 200.72 63.905 9.2807 0.005126 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> ## remove age

> fit <- update(fit, .~.-age)

> drop1(fit, test="F")

Single term deletions

Model:

oxy ~ runtime + intensity

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 165.29 57.885

runtime 1 464.20 629.49 97.339 78.6348 1.274e-09 ***

intensity 1 53.19 218.48 64.534 9.0105 0.005593 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> ## final model

> summary(fit)

Call:

lm(formula = oxy ~ runtime + intensity, data = my.fitness)

Residuals:

Min 1Q Median 3Q Max

-5.407 -1.334 -0.148 1.557 4.273

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 141.4228 19.9496 7.089 1.03e-07 ***

runtime -2.9896 0.3371 -8.868 1.27e-09 ***

intensity -63.9305 21.2978 -3.002 0.00559 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.43 on 28 degrees of freedom

Multiple R-squared: 0.8059, Adjusted R-squared: 0.792

F-statistic: 58.11 on 2 and 28 DF, p-value: 1.081e-10

> resplot(fit)
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Sequentially, the variables rstpulse, runpulse, weight and age are excluded from the model.
Finally, only runtime and intensity (the quotient of runpulse and maxpulse) are left in the
model.

g) According to our results, the rate of oxygen consumption could be modeled with the variables running
time and intensity. This yields an R-squared value around 0.8, i.e. the rate of oxygen consumption
can be explained well but not perfectly. It is difficult to tell whether this is sufficient for practical
purposes and cannot be concluded based on our results only. The trade-off between costs and loss of
precision would need to be assessed further.

2. > load("senic.rda")

> senic <- senic[,c("length", "age", "inf", "region", "beds", "pat", "nurs")]

a) We check the correlations between the continuous predictors:

> indices_categorical_vars <- which(is.element(colnames(senic), c("length", "region")))

> cor(senic[, -indices_categorical_vars])

age inf beds pat

age 1.000000000 -0.006266807 -0.05882316 -0.05477467

inf -0.006266807 1.000000000 0.36917855 0.39070521

beds -0.058823160 0.369178549 1.00000000 0.98099774

pat -0.054774667 0.390705214 0.98099774 1.00000000

nurs -0.082944616 0.402911390 0.91550415 0.90789698

nurs

age -0.08294462

inf 0.40291139

beds 0.91550415

pat 0.90789698

nurs 1.00000000

Graphical illustration of the correlations:

> library(ellipse)

> plotcorr(cor(senic[, -indices_categorical_vars]), cex.lab = 0.75, mar = c(1,1,1,1))

age

inf

beds

pat

nurs

ag
e

in
f

be
ds

pa
t

nu
rs

We see that beds, pat and nurs are strongly correlated. We expected this because they all can be
seen as measures of the size of a hospital. We will leave the variable pat unmodified because it is
definitely a key factor to take into account when length is the response variable. We change the
others to solve the high-correlation problem without having to take them out of the model. For this,
we will substitute beds by pat/beds and nurs by pat/nurs.

Before combining the variables, we check if beds and nurs contain zeroes:

> any(senic$beds == 0)

[1] FALSE

> any(senic$nurs == 0)
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[1] FALSE

Now we combine the variables and check the correlations again.

> senic.02 <- data.frame(length=senic$length, age=senic$age, inf=senic$inf,

region=senic$region, pat=senic$pat, pat.bed=senic$pat/senic$beds,

pat.nurs=senic$pat/senic$nurs)

> cor(senic.02[,-indices_categorical_vars])

age inf pat pat.bed

age 1.000000000 -0.006266807 -0.05477467 -0.1096058

inf -0.006266807 1.000000000 0.39070521 0.2897338

pat -0.054774667 0.390705214 1.00000000 0.4151079

pat.bed -0.109605797 0.289733778 0.41510791 1.0000000

pat.nurs 0.026954588 -0.285984796 0.05659985 0.2289331

pat.nurs

age 0.02695459

inf -0.28598480

pat 0.05659985

pat.bed 0.22893307

pat.nurs 1.00000000

Graphical illustration of the correlations after modifying some variables:

> plotcorr(cor(senic.02[,-indices_categorical_vars]), cex.lab = 0.75, mar = c(1,1,1,1))
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The correlations were strongly reduced and we still have some information about the variables beds

and nurs.

b) First, we take a look at the histogram of the predictors before doing transformations:

> par(mfrow=c(3,2))

> hist(senic.02$length)

> hist(senic.02$age)

> hist(senic.02$inf)

> hist(senic.02$pat)

> hist(senic.02$pat.bed)

> hist(senic.02$pat.nurs)
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The variables length, pat and pat.nurs need to be transformed. Moreover, we see that pat.bed is
slightly left skewed. In this case, one would try to square or cube the variable to improve the situation.
However, for the purpose of this question, we will not do it here and leave this as an exercise.

We check for zeroes in pat and length:

> any(senic.02$length == 0)

[1] FALSE

> any(senic.02$pat == 0)

[1] FALSE

Given that there are no zeroes in these variables, we are free to transform the predictors:

> senic.03 <- senic.02

> senic.03$length <- log(senic.02$length)

> senic.03$pat <- log(senic.02$pat)

> senic.03$pat.nurs <- log(senic.02$pat.nurs)

We look at the histograms again after applying the necessary transformations.

> par(mfrow=c(1,3))

> hist(senic.03$length)

> hist(senic.03$pat)

> hist(senic.03$pat.nurs)
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Histogram of senic.03$length
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We see that the transformations improved the histograms.

c) We fit a linear regression:

> fit.03 <- lm(length ~ age + inf + region + pat + pat.bed + pat.nurs, data=senic.03)

> summary(fit.03)

Call:

lm(formula = length ~ age + inf + region + pat + pat.bed + pat.nurs,

data = senic.03)

Residuals:

Min 1Q Median 3Q Max

-0.22160 -0.07198 -0.01166 0.06382 0.39264

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.379579 0.178646 7.722 7.39e-12 ***

age 0.007645 0.002551 2.997 0.003412 **

inf 0.053916 0.010312 5.228 8.88e-07 ***

regionN -0.074073 0.031132 -2.379 0.019168 *

regionS -0.121379 0.030443 -3.987 0.000125 ***

regionW -0.200437 0.039882 -5.026 2.10e-06 ***

pat 0.047034 0.017795 2.643 0.009485 **

pat.bed 0.106392 0.124304 0.856 0.394020

pat.nurs 0.073836 0.037202 1.985 0.049808 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1156 on 104 degrees of freedom

Multiple R-squared: 0.6081, Adjusted R-squared: 0.578

F-statistic: 20.17 on 8 and 104 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> source("../ex1/resplot.R")

> resplot(fit.03)
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Leverage Plot

From the summary we see that pat.bed is not statistically significant and a variable selection is
necessary (see next question).
From the model diagnostics plots we note that there are three outliers, i.e. observations 47, 101, and
112. However, since their Cook’s distance is below 0.5, they don’t significantly influence our fit and
we proceed with our analysis. The assumptions of linearity and constant variance seem to be satisfied.
The QQ-plot does not look perfect but we can also accept the normality assumption.
Now we visualise our model with partial residual plots.

> library(car)

> crPlots(fit.03, cex.lab = .75)
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Component + Residual Plots

As it can be seen in the plots, the predictor pat.bed don’t have much explanatory power, and indeed,
its p-value is also large.
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Now, we perform backwards elimination using fit.03 as our starting model. We remove the variable
pat.bed:

> fit.P1 <- lm(length ~ age + inf + region + pat + pat.nurs, data=senic.03)

> summary(fit.P1)

Call:

lm(formula = length ~ age + inf + region + pat + pat.nurs, data = senic.03)

Residuals:

Min 1Q Median 3Q Max

-0.21159 -0.07408 -0.01331 0.06479 0.39816

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.438983 0.164404 8.753 3.80e-14 ***

age 0.007404 0.002532 2.924 0.00424 **

inf 0.055360 0.010160 5.449 3.37e-07 ***

regionN -0.078067 0.030741 -2.540 0.01257 *

regionS -0.123516 0.030302 -4.076 8.92e-05 ***

regionW -0.209690 0.038340 -5.469 3.08e-07 ***

pat 0.052614 0.016537 3.182 0.00193 **

pat.nurs 0.081985 0.035917 2.283 0.02447 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1155 on 105 degrees of freedom

Multiple R-squared: 0.6053, Adjusted R-squared: 0.579

F-statistic: 23.01 on 7 and 105 DF, p-value: < 2.2e-16

Note that the F-statistic increased. Since the rest of the variables are statistically significant, pat.bed
is the only predictor that is left out of the model.

Now we look at the residuals of model fit.P1:

> par(mfrow=c(2,2))

> resplot(fit.P1)
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Leverage Plot

Model diagnostics plots look similar to the ones of the fit containing all predictors. The assumptions
of linearity, constant variance and normality of the errors seem to be fine.

d) Backward elimination:

> fit.B <- step(fit.03, direction="backward")

Start: AIC=-478.96

length ~ age + inf + region + pat + pat.bed + pat.nurs
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Df Sum of Sq RSS AIC

- pat.bed 1 0.00979 1.4000 -480.17

<none> 1.3902 -478.96

- pat.nurs 1 0.05266 1.4429 -476.76

- pat 1 0.09339 1.4836 -473.62

- age 1 0.12006 1.5103 -471.60

- region 3 0.41062 1.8009 -455.72

- inf 1 0.36544 1.7557 -454.59

Step: AIC=-480.17

length ~ age + inf + region + pat + pat.nurs

Df Sum of Sq RSS AIC

<none> 1.4000 -480.17

- pat.nurs 1 0.06947 1.4695 -476.70

- age 1 0.11399 1.5140 -473.33

- pat 1 0.13498 1.5350 -471.77

- inf 1 0.39587 1.7959 -454.03

- region 3 0.46502 1.8651 -453.76

> summary(fit.B)

Call:

lm(formula = length ~ age + inf + region + pat + pat.nurs, data = senic.03)

Residuals:

Min 1Q Median 3Q Max

-0.21159 -0.07408 -0.01331 0.06479 0.39816

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.438983 0.164404 8.753 3.80e-14 ***

age 0.007404 0.002532 2.924 0.00424 **

inf 0.055360 0.010160 5.449 3.37e-07 ***

regionN -0.078067 0.030741 -2.540 0.01257 *

regionS -0.123516 0.030302 -4.076 8.92e-05 ***

regionW -0.209690 0.038340 -5.469 3.08e-07 ***

pat 0.052614 0.016537 3.182 0.00193 **

pat.nurs 0.081985 0.035917 2.283 0.02447 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1155 on 105 degrees of freedom

Multiple R-squared: 0.6053, Adjusted R-squared: 0.579

F-statistic: 23.01 on 7 and 105 DF, p-value: < 2.2e-16

The backward elimination using AIC only removes the variable pat.bed from the model, just as the
backward elimination using the p-values did.

e) Forward selection:

> fit.empty <- lm(length ~ 1, data=senic.03)

> scp <- list(lower=~1, upper=~age + inf + region + pat + pat.bed + pat.nurs)

> fit.F <- step(fit.empty, scope=scp, direction="forward")

Start: AIC=-389.11

length ~ 1

Df Sum of Sq RSS AIC

+ inf 1 1.08286 2.4646 -428.27

+ pat 1 0.94180 2.6057 -421.98
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+ region 3 0.98268 2.5648 -419.76

+ pat.bed 1 0.69376 2.8537 -411.70

+ age 1 0.10368 3.4438 -390.46

+ pat.nurs 1 0.07906 3.4684 -389.66

<none> 3.5475 -389.11

Step: AIC=-428.27

length ~ inf

Df Sum of Sq RSS AIC

+ region 3 0.71923 1.7454 -461.26

+ pat.bed 1 0.30829 2.1563 -441.37

+ pat 1 0.29591 2.1687 -440.72

+ pat.nurs 1 0.28973 2.1749 -440.40

+ age 1 0.10793 2.3567 -431.33

<none> 2.4646 -428.27

Step: AIC=-461.26

length ~ inf + region

Df Sum of Sq RSS AIC

+ pat 1 0.151470 1.5939 -469.52

+ pat.nurs 1 0.128904 1.6165 -467.93

+ age 1 0.086145 1.6592 -464.98

+ pat.bed 1 0.079078 1.6663 -464.50

<none> 1.7454 -461.26

Step: AIC=-469.52

length ~ inf + region + pat

Df Sum of Sq RSS AIC

+ age 1 0.124380 1.4695 -476.70

+ pat.nurs 1 0.079866 1.5140 -473.33

<none> 1.5939 -469.52

+ pat.bed 1 0.016785 1.5771 -468.71

Step: AIC=-476.7

length ~ inf + region + pat + age

Df Sum of Sq RSS AIC

+ pat.nurs 1 0.069473 1.4000 -480.17

+ pat.bed 1 0.026608 1.4429 -476.76

<none> 1.4695 -476.70

Step: AIC=-480.17

length ~ inf + region + pat + age + pat.nurs

Df Sum of Sq RSS AIC

<none> 1.4000 -480.17

+ pat.bed 1 0.0097928 1.3902 -478.96

> summary(fit.F)

Call:

lm(formula = length ~ inf + region + pat + age + pat.nurs, data = senic.03)

Residuals:

Min 1Q Median 3Q Max

-0.21159 -0.07408 -0.01331 0.06479 0.39816

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.438983 0.164404 8.753 3.80e-14 ***

inf 0.055360 0.010160 5.449 3.37e-07 ***

regionN -0.078067 0.030741 -2.540 0.01257 *

regionS -0.123516 0.030302 -4.076 8.92e-05 ***

regionW -0.209690 0.038340 -5.469 3.08e-07 ***

pat 0.052614 0.016537 3.182 0.00193 **

age 0.007404 0.002532 2.924 0.00424 **

pat.nurs 0.081985 0.035917 2.283 0.02447 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1155 on 105 degrees of freedom

Multiple R-squared: 0.6053, Adjusted R-squared: 0.579

F-statistic: 23.01 on 7 and 105 DF, p-value: < 2.2e-16

We get the same result as when we performed a backward elimination using AIC and when using
p-values (only predictor pat.bed has been taken out of the model). Note that this happened in our
particular example and is not always the case.

f) > step(fit.03, direction="both")

Start: AIC=-478.96

length ~ age + inf + region + pat + pat.bed + pat.nurs

Df Sum of Sq RSS AIC

- pat.bed 1 0.00979 1.4000 -480.17

<none> 1.3902 -478.96

- pat.nurs 1 0.05266 1.4429 -476.76

- pat 1 0.09339 1.4836 -473.62

- age 1 0.12006 1.5103 -471.60

- region 3 0.41062 1.8009 -455.72

- inf 1 0.36544 1.7557 -454.59

Step: AIC=-480.17

length ~ age + inf + region + pat + pat.nurs

Df Sum of Sq RSS AIC

<none> 1.4000 -480.17

+ pat.bed 1 0.00979 1.3902 -478.96

- pat.nurs 1 0.06947 1.4695 -476.70

- age 1 0.11399 1.5140 -473.33

- pat 1 0.13498 1.5350 -471.77

- inf 1 0.39587 1.7959 -454.03

- region 3 0.46502 1.8651 -453.76

Call:

lm(formula = length ~ age + inf + region + pat + pat.nurs, data = senic.03)

Coefficients:

(Intercept) age inf regionN

1.438983 0.007404 0.055360 -0.078067

regionS regionW pat pat.nurs

-0.123516 -0.209690 0.052614 0.081985

Starting with the full model leaves pat.bed out the model. Therefore, this method yields to the same
result as models fit.P1, fit.B, and fit.F.

> step(fit.empty, scope=scp, direction="both")

Start: AIC=-389.11

length ~ 1
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Df Sum of Sq RSS AIC

+ inf 1 1.08286 2.4646 -428.27

+ pat 1 0.94180 2.6057 -421.98

+ region 3 0.98268 2.5648 -419.76

+ pat.bed 1 0.69376 2.8537 -411.70

+ age 1 0.10368 3.4438 -390.46

+ pat.nurs 1 0.07906 3.4684 -389.66

<none> 3.5475 -389.11

Step: AIC=-428.27

length ~ inf

Df Sum of Sq RSS AIC

+ region 3 0.71923 1.7454 -461.26

+ pat.bed 1 0.30829 2.1563 -441.37

+ pat 1 0.29591 2.1687 -440.72

+ pat.nurs 1 0.28973 2.1749 -440.40

+ age 1 0.10793 2.3567 -431.33

<none> 2.4646 -428.27

- inf 1 1.08286 3.5475 -389.11

Step: AIC=-461.26

length ~ inf + region

Df Sum of Sq RSS AIC

+ pat 1 0.15147 1.5939 -469.52

+ pat.nurs 1 0.12890 1.6165 -467.93

+ age 1 0.08614 1.6592 -464.98

+ pat.bed 1 0.07908 1.6663 -464.50

<none> 1.7454 -461.26

- region 3 0.71923 2.4646 -428.27

- inf 1 0.81941 2.5648 -419.76

Step: AIC=-469.52

length ~ inf + region + pat

Df Sum of Sq RSS AIC

+ age 1 0.12438 1.4695 -476.70

+ pat.nurs 1 0.07987 1.5140 -473.33

<none> 1.5939 -469.52

+ pat.bed 1 0.01678 1.5771 -468.71

- pat 1 0.15147 1.7454 -461.26

- inf 1 0.35905 1.9529 -448.56

- region 3 0.57478 2.1687 -440.72

Step: AIC=-476.7

length ~ inf + region + pat + age

Df Sum of Sq RSS AIC

+ pat.nurs 1 0.06947 1.4000 -480.17

+ pat.bed 1 0.02661 1.4429 -476.76

<none> 1.4695 -476.70

- age 1 0.12438 1.5939 -469.52

- pat 1 0.18970 1.6592 -464.98

- inf 1 0.33436 1.8039 -455.53

- region 3 0.53057 2.0001 -447.86

Step: AIC=-480.17

length ~ inf + region + pat + age + pat.nurs
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Df Sum of Sq RSS AIC

<none> 1.4000 -480.17

+ pat.bed 1 0.00979 1.3902 -478.96

- pat.nurs 1 0.06947 1.4695 -476.70

- age 1 0.11399 1.5140 -473.33

- pat 1 0.13498 1.5350 -471.77

- inf 1 0.39587 1.7959 -454.03

- region 3 0.46502 1.8651 -453.76

Call:

lm(formula = length ~ inf + region + pat + age + pat.nurs, data = senic.03)

Coefficients:

(Intercept) inf regionN regionS

1.438983 0.055360 -0.078067 -0.123516

regionW pat age pat.nurs

-0.209690 0.052614 0.007404 0.081985

Doing stepwise starting with the empty model yields the same result than doing stepwise starting with
the full model, backward elimination and forward elimination. Note that this is not always the case:
applying these methods with different data could give us different results.

3. a) > ## load data

> load("FoHF.rda")

> ## fit model with all variables

> fit <- lm(FoHF ~ ., data=FoHF)

> summary(fit)

Call:

lm(formula = FoHF ~ ., data = FoHF)

Residuals:

Min 1Q Median 3Q Max

-0.0185186 -0.0031189 0.0004069 0.0035469 0.0148925

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.002256 0.001299 -1.736 0.0862 .

RV -0.388854 0.171151 -2.272 0.0257 *

CA 0.238653 0.104522 2.283 0.0250 *

FIA 0.363010 0.087832 4.133 8.51e-05 ***

EMN 0.184766 0.197475 0.936 0.3522

ED 0.314914 0.215792 1.459 0.1482

DS -0.007699 0.124324 -0.062 0.9508

MA -0.028413 0.169406 -0.168 0.8672

LSE 0.153636 0.099548 1.543 0.1266

GM 0.127093 0.086897 1.463 0.1474

EM 0.049183 0.035065 1.403 0.1645

CTA 0.159225 0.037304 4.268 5.20e-05 ***

SS 0.032630 0.023424 1.393 0.1673

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.006563 on 83 degrees of freedom

Multiple R-squared: 0.8076, Adjusted R-squared: 0.7798

F-statistic: 29.03 on 12 and 83 DF, p-value: < 2.2e-16

Only four variables are significant at the 5% level in the summary output; two variables are associated
with a very small p-value. The multiple R-squared is large with a value of more than 80% and also
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the global F-test is highly significant. This means that the return of the FoHF is explained very well
and not all subindices are necessary for this. Therefore, we can assume that the FoHF does not invest
in all subindices.

b) > par(mfrow=c(2,2))

> source("../ex1/resplot.R")

> resplot(fit)
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Leverage Plot

The residual plots show that there is no systematic error in the model. The normality assumption
seems to be satisfied. The smoother in the scale location plot does show some deviations from the
horizon. It is generally known that finance data shows volatility, i.e. the (conditional) variance is not
necessarily constant over time. However, in this case these deviations are not very strong, so that
the constant variance assumption seems to be satisfied and we can proceed with the analysis. Lastly,
there are two points with high leverage but since their Cook’s distance is small, they can be tolerated.

> ## check for large multicollinearity

> library(ellipse)

> par(mfrow=c(1,1))

> plotcorr(cor(FoHF[,-1]), cex.lab = 0.75, mar = c(1,1,1,1))
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We check for high multicollinearity of the predictors by plotting the pairwise correlations and by
computing the VIFs.

> library(faraway)

> vif(fit)

RV CA FIA EMN ED DS

6.387024 2.982646 2.271113 3.672017 29.973694 9.404810
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MA LSE GM EM CTA SS

8.001994 10.046374 5.699120 4.255477 2.232320 4.972861

The VIF of the variables ED and LSE are larger than 10 and therefore larger than the threshold of
what can be tolerated.

> library(car)

> crPlots(fit, layout = c(3,3))
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Lastly, we look at the partial residual plots to check whether all predictors have been entered into the
model in the correct form. The plots show some deviations but these are neither heavy nor systematic.

c) We saw that there is a multicollinearity problem. The possible remedies are limited in this case: since
the FoHF can invest in all of the given subindices, we cannot amputate some of them. Similarly,
creating new variables in this context does not make sense and we cannot transform the predictors
either – the FoHF invests in the subindices which contribute directly and linearly to the return of the
FoHF. The multicollinearity problem is caused by the fact that the performance of certain subindices
are indeed highly correlated.

It is possible, however, to perform a variable selection which will hopefully alleviate the multicollinearity
problem. From the summary output, it is plausible that the FoHF does not invest in all subindices.
In the following subtask, we shall try to achieve a reduction of the model size so that the final model
will only contain those subindices the FoHF does in fact invest in.

d) (i) Stepwise variable selection, starting with the full model.

> ## variable selection with BIC, starting with the full model

> fit.bic.01 <- step(fit, k=log(nrow(FoHF)))

Start: AIC=-919.68

FoHF ~ RV + CA + FIA + EMN + ED + DS + MA + LSE + GM + EM + CTA +

SS

Df Sum of Sq RSS AIC

- DS 1 0.00000017 0.0035753 -924.24
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- MA 1 0.00000121 0.0035763 -924.21

- EMN 1 0.00003771 0.0036128 -923.24

- SS 1 0.00008358 0.0036587 -922.03

- EM 1 0.00008474 0.0036598 -922.00

- ED 1 0.00009173 0.0036668 -921.81

- GM 1 0.00009214 0.0036672 -921.80

- LSE 1 0.00010260 0.0036777 -921.53

<none> 0.0035751 -919.68

- RV 1 0.00022234 0.0037974 -918.45

- CA 1 0.00022456 0.0037996 -918.40

- FIA 1 0.00073576 0.0043108 -906.28

- CTA 1 0.00078472 0.0043598 -905.20

Step: AIC=-924.24

FoHF ~ RV + CA + FIA + EMN + ED + MA + LSE + GM + EM + CTA +

SS

Df Sum of Sq RSS AIC

- MA 1 0.00000108 0.0035763 -928.78

- EMN 1 0.00003761 0.0036129 -927.80

- SS 1 0.00008344 0.0036587 -926.59

- EM 1 0.00008500 0.0036603 -926.55

- GM 1 0.00009213 0.0036674 -926.36

- LSE 1 0.00010811 0.0036834 -925.95

<none> 0.0035753 -924.24

- RV 1 0.00022710 0.0038024 -922.89

- CA 1 0.00022724 0.0038025 -922.89

- ED 1 0.00023020 0.0038055 -922.82

- FIA 1 0.00073934 0.0043146 -910.76

- CTA 1 0.00079410 0.0043693 -909.55

Step: AIC=-928.78

FoHF ~ RV + CA + FIA + EMN + ED + LSE + GM + EM + CTA + SS

Df Sum of Sq RSS AIC

- EMN 1 0.00003909 0.0036154 -932.30

- SS 1 0.00008398 0.0036603 -931.11

- EM 1 0.00008759 0.0036639 -931.02

- GM 1 0.00010058 0.0036769 -930.68

- LSE 1 0.00010832 0.0036846 -930.48

<none> 0.0035763 -928.78

- CA 1 0.00024101 0.0038173 -927.08

- RV 1 0.00026057 0.0038369 -926.59

- ED 1 0.00035144 0.0039278 -924.34

- CTA 1 0.00079349 0.0043698 -914.11

- FIA 1 0.00079685 0.0043732 -914.03

Step: AIC=-932.3

FoHF ~ RV + CA + FIA + ED + LSE + GM + EM + CTA + SS

Df Sum of Sq RSS AIC

- EM 1 0.00007430 0.0036897 -934.91

- SS 1 0.00010742 0.0037228 -934.05

- GM 1 0.00012492 0.0037403 -933.60

<none> 0.0036154 -932.30

- LSE 1 0.00018537 0.0038008 -932.06

- RV 1 0.00025580 0.0038712 -930.30

- ED 1 0.00035729 0.0039727 -927.82

- CA 1 0.00040461 0.0040200 -926.68
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- FIA 1 0.00075873 0.0043741 -918.57

- CTA 1 0.00088516 0.0045006 -915.84

Step: AIC=-934.91

FoHF ~ RV + CA + FIA + ED + LSE + GM + CTA + SS

Df Sum of Sq RSS AIC

- SS 1 0.00005369 0.0037434 -938.09

- LSE 1 0.00014269 0.0038324 -935.83

<none> 0.0036897 -934.91

- GM 1 0.00024280 0.0039325 -933.36

- RV 1 0.00026091 0.0039506 -932.92

- CA 1 0.00037752 0.0040672 -930.12

- ED 1 0.00058092 0.0042706 -925.44

- CTA 1 0.00081755 0.0045073 -920.26

- FIA 1 0.00083132 0.0045210 -919.97

Step: AIC=-938.09

FoHF ~ RV + CA + FIA + ED + LSE + GM + CTA

Df Sum of Sq RSS AIC

- LSE 1 0.00009111 0.0038345 -940.34

<none> 0.0037434 -938.09

- RV 1 0.00024437 0.0039878 -936.58

- GM 1 0.00027617 0.0040196 -935.82

- CA 1 0.00038539 0.0041288 -933.24

- ED 1 0.00052919 0.0042726 -929.96

- CTA 1 0.00083822 0.0045816 -923.25

- FIA 1 0.00092714 0.0046706 -921.41

Step: AIC=-940.34

FoHF ~ RV + CA + FIA + ED + GM + CTA

Df Sum of Sq RSS AIC

- RV 1 0.00016854 0.0040031 -940.78

<none> 0.0038345 -940.34

- CA 1 0.00031176 0.0041463 -937.40

- GM 1 0.00072123 0.0045558 -928.36

- CTA 1 0.00074886 0.0045834 -927.78

- ED 1 0.00083966 0.0046742 -925.90

- FIA 1 0.00085130 0.0046858 -925.66

Step: AIC=-940.78

FoHF ~ CA + FIA + ED + GM + CTA

Df Sum of Sq RSS AIC

<none> 0.0040031 -940.78

- CA 1 0.00019591 0.0041990 -940.76

- GM 1 0.00066084 0.0046639 -930.67

- ED 1 0.00071917 0.0047222 -929.48

- FIA 1 0.00073423 0.0047373 -929.18

- CTA 1 0.00089226 0.0048953 -926.03

> summary(fit.bic.01)

Call:

lm(formula = FoHF ~ CA + FIA + ED + GM + CTA, data = FoHF)

Residuals:

Min 1Q Median 3Q Max

-0.017656 -0.003736 0.000617 0.003476 0.016531
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0018567 0.0009089 -2.043 0.043984 *

CA 0.1756651 0.0837020 2.099 0.038645 *

FIA 0.2984918 0.0734666 4.063 0.000103 ***

ED 0.2654424 0.0660132 4.021 0.000120 ***

GM 0.2469422 0.0640654 3.855 0.000217 ***

CTA 0.1535033 0.0342726 4.479 2.2e-05 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.006669 on 90 degrees of freedom

Multiple R-squared: 0.7846, Adjusted R-squared: 0.7726

F-statistic: 65.55 on 5 and 90 DF, p-value: < 2.2e-16

(ii) Stepwise variable selection, starting with the empty model.

> ## variable selection with BIC, starting with the empty model

> fit.null <- lm(FoHF ~ 1, data=FoHF)

> scopi <- list(lower=formula(fit.null), upper=formula(fit))

> fit.bic.02 <- step(fit.null, scope=scopi, k=log(nrow(FoHF)))

Start: AIC=-816.23

FoHF ~ 1

Df Sum of Sq RSS AIC

+ GM 1 0.0116463 0.0069343 -906.29

+ ED 1 0.0072492 0.0113314 -859.15

+ EMN 1 0.0071500 0.0114306 -858.31

+ DS 1 0.0066117 0.0119689 -853.89

+ EM 1 0.0065705 0.0120101 -853.56

+ FIA 1 0.0059473 0.0126333 -848.70

+ LSE 1 0.0058787 0.0127020 -848.18

+ RV 1 0.0055859 0.0129947 -846.00

+ CA 1 0.0047059 0.0138748 -839.71

+ MA 1 0.0043282 0.0142525 -837.13

+ CTA 1 0.0027357 0.0158449 -826.96

+ SS 1 0.0020455 0.0165351 -822.87

<none> 0.0185806 -816.23

Step: AIC=-906.29

FoHF ~ GM

Df Sum of Sq RSS AIC

+ CA 1 0.0013440 0.0055904 -922.41

+ FIA 1 0.0012867 0.0056477 -921.43

+ DS 1 0.0008103 0.0061241 -913.66

+ ED 1 0.0007262 0.0062081 -912.35

+ RV 1 0.0004910 0.0064434 -908.78

+ MA 1 0.0004643 0.0064700 -908.38

+ EMN 1 0.0004195 0.0065148 -907.72

<none> 0.0069343 -906.29

+ EM 1 0.0002708 0.0066636 -905.55

+ CTA 1 0.0000318 0.0069025 -902.17

+ LSE 1 0.0000280 0.0069064 -902.11

+ SS 1 0.0000009 0.0069334 -901.74

- GM 1 0.0116463 0.0185806 -816.23

Step: AIC=-922.41
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FoHF ~ GM + CA

Df Sum of Sq RSS AIC

+ FIA 1 0.0004944 0.0050959 -926.73

+ CTA 1 0.0003730 0.0052174 -924.47

<none> 0.0055904 -922.41

+ DS 1 0.0001376 0.0054527 -920.24

+ ED 1 0.0001021 0.0054882 -919.61

+ EM 1 0.0000447 0.0055457 -918.61

+ MA 1 0.0000393 0.0055511 -918.52

+ SS 1 0.0000330 0.0055574 -918.41

+ EMN 1 0.0000191 0.0055712 -918.17

+ RV 1 0.0000025 0.0055878 -917.89

+ LSE 1 0.0000024 0.0055880 -917.88

- CA 1 0.0013440 0.0069343 -906.29

- GM 1 0.0082844 0.0138748 -839.71

Step: AIC=-926.73

FoHF ~ GM + CA + FIA

Df Sum of Sq RSS AIC

+ CTA 1 0.0003737 0.0047222 -929.48

<none> 0.0050959 -926.73

+ ED 1 0.0002006 0.0048953 -926.03

+ MA 1 0.0001505 0.0049454 -925.05

+ DS 1 0.0001452 0.0049507 -924.95

+ EMN 1 0.0001411 0.0049548 -924.87

+ EM 1 0.0000704 0.0050255 -923.51

+ LSE 1 0.0000383 0.0050577 -922.89

- FIA 1 0.0004944 0.0055904 -922.41

+ SS 1 0.0000056 0.0050904 -922.27

+ RV 1 0.0000055 0.0050904 -922.27

- CA 1 0.0005517 0.0056477 -921.43

- GM 1 0.0063437 0.0114396 -853.67

Step: AIC=-929.48

FoHF ~ GM + CA + FIA + CTA

Df Sum of Sq RSS AIC

+ ED 1 0.0007192 0.0040031 -940.78

+ DS 1 0.0004934 0.0042289 -935.51

+ LSE 1 0.0003982 0.0043240 -933.37

+ EM 1 0.0003709 0.0043513 -932.77

+ MA 1 0.0003524 0.0043698 -932.36

<none> 0.0047222 -929.48

+ SS 1 0.0001590 0.0045633 -928.20

+ EMN 1 0.0001447 0.0045775 -927.91

- CTA 1 0.0003737 0.0050959 -926.73

+ RV 1 0.0000481 0.0046742 -925.90

- FIA 1 0.0004951 0.0052174 -924.47

- CA 1 0.0008029 0.0055252 -918.97

- GM 1 0.0035251 0.0082473 -880.52

Step: AIC=-940.78

FoHF ~ GM + CA + FIA + CTA + ED

Df Sum of Sq RSS AIC

<none> 0.0040031 -940.78

- CA 1 0.00019591 0.0041990 -940.76
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+ RV 1 0.00016854 0.0038345 -940.34

+ EMN 1 0.00004912 0.0039539 -937.40

+ EM 1 0.00002789 0.0039752 -936.88

+ LSE 1 0.00001528 0.0039878 -936.58

+ SS 1 0.00001019 0.0039929 -936.46

+ DS 1 0.00000805 0.0039950 -936.41

+ MA 1 0.00000154 0.0040015 -936.25

- GM 1 0.00066084 0.0046639 -930.67

- ED 1 0.00071917 0.0047222 -929.48

- FIA 1 0.00073423 0.0047373 -929.18

- CTA 1 0.00089226 0.0048953 -926.03

> summary(fit.bic.02)

Call:

lm(formula = FoHF ~ GM + CA + FIA + CTA + ED, data = FoHF)

Residuals:

Min 1Q Median 3Q Max

-0.017656 -0.003736 0.000617 0.003476 0.016531

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0018567 0.0009089 -2.043 0.043984 *

GM 0.2469422 0.0640654 3.855 0.000217 ***

CA 0.1756651 0.0837020 2.099 0.038645 *

FIA 0.2984918 0.0734666 4.063 0.000103 ***

CTA 0.1535033 0.0342726 4.479 2.2e-05 ***

ED 0.2654424 0.0660132 4.021 0.000120 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.006669 on 90 degrees of freedom

Multiple R-squared: 0.7846, Adjusted R-squared: 0.7726

F-statistic: 65.55 on 5 and 90 DF, p-value: < 2.2e-16

(iii) All Subsets variable selection.

> ## All Subsets Search

> library(leaps)

> out <- regsubsets(FoHF~., nvmax=12, data=FoHF)

> plot(out)

> coef(out,5)

(Intercept) CA FIA ED

-0.001856729 0.175665074 0.298491812 0.265442447

GM CTA

0.246942244 0.153503336
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All three variable selection methods yield the same model. It contains the subindices CA, FIA, ED,

GM and CTA. All Subsets search shows that there are three alternative models with almost identical
BIC values – they contain 4, 6 and 7 predictors respectively.

e) > ## Lasso

> library(glmnet)

> xx <- model.matrix(FoHF~., data=FoHF)

> yy <- FoHF$FoHF

> cvfit <- cv.glmnet(xx,yy)

> plot(cvfit)

> coef(cvfit, s = "lambda.1se")

14 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 0.0002196824

(Intercept) .

RV .

CA 0.0676192479

FIA 0.2044571894

EMN 0.1160512738

ED 0.0927171171

DS 0.0249532901

MA .

LSE .

GM 0.3178869629

EM .

CTA 0.0390495344

SS .
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> fit.lasso <- glmnet(xx,yy)

> par(mfrow = c(1,2))

> plot(fit.lasso, label = TRUE, xvar = "lambda")

> abline(v = log(cvfit$lambda.1se), col = 2)

> plot(fit.lasso, label = TRUE)
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Cross validation yields a model with 7 predictors. However, these are not identical to the ones chosen
by the best BIC fit with 7 predictors. In general, the Lasso is a suitable tool as it can handle the
multicollinearity of the predictors and perform variable selection. Both of these aspects are necessary
here since the subindices are collinear and we know that the FoHF is not invested in all possible
subindices. Therefore, the Lasso solution should also be considered next to the one from the variable
selection with BIC.


