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Solution to Series 3

1. a) The required R commands are as follows:

> ## Load data

> load("conconi.rda")

> ## Scatter plot

> plot(puls ~ speed, data=conconi, pch=20, xlim=c(8.5,18.5), ylim=c(140,205))

> title("Conconi-Test: Puls vs. Speed")

> ## Regression

> fit <- lm(puls ~ speed, data=conconi)

> abline(fit, col="red")

> summary(fit)

Call:

lm(formula = puls ~ speed, data = conconi)

Residuals:

Min 1Q Median 3Q Max

-4.4947 -1.0123 0.5228 1.1825 3.6737

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 86.6105 2.5372 34.14 <2e-16 ***

speed 6.4070 0.1842 34.78 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.199 on 17 degrees of freedom

Multiple R-squared: 0.9861, Adjusted R-squared: 0.9853

F-statistic: 1210 on 1 and 17 DF, p-value: < 2.2e-16

• The multiple R-squared is 98.61%. This is the amount of the scatter in the pulse which can be
explained by the increase in speed.

• As can be seen in the summary output β̂1 = 6.4070. This is the amount the pulse increases on
average when the speed is increased by 1 km/h. The 95% confidence interval for the slope is
computed as follows:

> ci <- confint(fit)

> ci

2.5 % 97.5 %

(Intercept) 81.257578 91.963475

speed 6.018418 6.795617

The confidence interval for the slope is shown in the last line. These values are also plausible for
the increase in pulse when the speed is increased by 1 km/h.

• The estimate for the regression line at x = 0 is the intercept. It can be obtained from the summary
output. The 95% confidence interval for this value is [81.26,91.96] (cf. R output belonging to the
previous subquestion). Alternatively, one can make a prediction at the value x = 0 and compute
the corresponding 95% confidence interval. This procedure will be discussed later in the class.

> new.x <- data.frame(speed = 0)

> predict(fit, new.x, interval="confidence")

fit lwr upr

1 86.61053 81.25758 91.96347
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The numerical values of these two approaches are identical. Please note that this prediction
constitutes a strong extrapolation. Therefore, it is not reliable in general. In this case, however,
both the predicted value as well as the interval seem to be realistic. Thus, it could be true that a
linear relation also holds for slower speeds up until no movement. To verify this claim we would
need to make additional measurements.

b) For Dani, the estimate is β̂1 = 4.093, i.e. it is smaller. We now need to establish whether the
difference between the two increases is significant. To do this, we cannot take one of the two slopes
as the ground truth and do a simple hypothesis test. Instead, we need to do a two-sample regression
coefficient test. We have not seen such a test in class. An alternative is to test whether the two
95% confidence intervals (CI) for the slopes overlap. If this is not the case, then there is a significant
difference. In Dani’s case, the CI is approximately [3.9; 4.3] (estimate +/- 2x standard error). So
the two 95% confidence intervals do not overlap and there is a significant difference between the two
increases of the pulse. However, we cannot deduce who is the better runner. The slower increase in
pulse indicates that Dani might be the better runner but we do not know the intercept. Additionally,
the maximally attainable pulse is different for each individual. Therefore, we cannot draw a conclusion
without knowing these quantities.

c) The R Code is:

> ## residual plots

> par(mfrow=c(1,2))

> plot(conconi$speed, resid(fit), pch=20)

> lines(loess.smooth(conconi$speed, resid(fit)), col="red")

> title("Residuals vs. predictor")

> abline(h=0, col="grey", lty=2)

> qqnorm(resid(fit), pch=20)

> qqline(resid(fit), col="grey")
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Alternatively, these plot can be obtained as follows:

> ## alternatively

> plot(fit, which=1, pch=20, id.n=5)

> plot(fit, which=2, pch=20)

The smoother in the plot“residuals vs. predictor”deviates clearly from the horizontal line. We need to
decide whether this deviation is random or systematic which is not easy to determine. The deviation
is caused by three data points at a medium speed of 12-14km/h which are associated with strongly
negative residuals. To come to a conclusion, some background knowledge is helpful: In theory, there
is a linear relation between speed and pulse as long as the physical prerequisites (warm-up, fatigue)
and the external conditions (weather, wind) are constant. Secondly, the lecturer received feedback
regarding his speed only every 200m and his speed was not always at the value it should have taken.
This explains the deviations from the linear relation and we can conclude that the deviation is not
systematic. The fact that three data points are affected that are very close to each other seems to be
“bad luck”.
The variance of the errors seems to be constant, even though there are some residuals which are
clearly larger than the rest. On the other hand, this does not seem to be a systematic deviation from
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the asumption of constant variance. Moreover, the observations seem to follow a Normal distribution
except for the three data points discussed above.

With respect to the correlation, we need to take into account that the measurements were made in a
temporal sequence. Therefore, serial correlations could be present. In this case, their existence could
be easily explained: In the test setup, it is difficult to achieve the required speed exactly. If one is too
fast on a given 200m section and receives this feedback afterwards, one might run too slowly on the
subsequent 200m section (which is associated with a recovery of the heart frequency), etc.

2. a) > ## load data

> load("gas.rda")

> ## analysis of the gas consumption

> par(mfrow=c(1,1))

> plot(verbrauch ~ temp, data=gas, pch=20)

> title("Gas consumption vs. temperature")

> fit <- lm(verbrauch ~ temp, data=gas)

> abline(fit, col="red", lwd=2)
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> par(mfrow=c(1,2))

> plot(fitted(fit), resid(fit), pch=20)

> lines(loess.smooth(fitted(fit), resid(fit)), col="red")

> title("Residuals vs. Fitted")

> abline(h=0, lty=2)

> qqnorm(resid(fit), pch=20); qqline(resid(fit))
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At first sight the scatter plot seems to suggest that the regression line fits well. However, the plot
“Residuals vs. Fitted” gives another impression. The smoother shows a strong deviation towards the
bottom which indicates the presence of a systematic error. Similarly, the variance seems to be larger
for large fitted values. The Normal plot does not show any abnormalities. Whether the observations
are correlated cannot be determined based on these two plots. We would have to know whether the
observations were recorded in a temporal order and whether residuals of observations close in time
show abnormalities. In summary, the two assumptions E (Ei) = 0 and Var (Ei) = σ2

E might be
violated. A log-transformation would yield a much better fit and should be applied.

b) > ## load data

> load("antikeUhren.rda")

> ## analysis of the gas consumption

> par(mfrow=c(1,1))

> plot(Preis ~ Alter, data=antikeUhren, pch=20)

> title("Price vs. Age")

> fit <- lm(Preis ~ Alter, data=antikeUhren)

> abline(fit, col="red", lwd=2)

>
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> par(mfrow=c(1,2))

> plot(fitted(fit), resid(fit), pch=20)

> lines(loess.smooth(fitted(fit), resid(fit)), col="red")

> title("Residuals vs. Fitted")

> abline(h=0, lty=2)

> qqnorm(resid(fit), pch=20); qqline(resid(fit))
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This model shows a good fit. The smoother in the plot“Residuals vs. Fitted”is almost horizontal and
does not show systematic deviations from the x-axis. The variance of the data points is approximately
constant. It is only slightly smaller on the left which is not a significant problem. The Normal plot does
not show any abnormalities. Whether the observations are correlated cannot be determined based on
these two plots. These could occur if the clocks were sold at different auctions with systematically
larger or smaller prices. This would cause a correlation of the corresponding residuals. In summary,
however, we can speak of a well-fitting model.

3. a) False. Also a model with a large or very large R2 can have a non-tolerable, systematic error.

b) False. In this case there is a relation between response and predictor, but this relation does not
have to be causal.

c) True. The OLS estimator loses efficiency in the presence of long-tailed residuals but it remains
unbiased. As long as the long tails are not too heavy, we can usually tolerate the effect.

d) False. A systematic deviation of the smoother in the “residuals vs. predictor” plot always means
that the model yields wrong predictions which cannot be tolerated.

e) True. More precise insights are given by the 95% prediction interval, the computation of which
is more complex than the above rule of thumb. However, if the number of observations is large
enough, the deviation from this rule of thumb is small.

4. a) First we type in the data. The scatterplot of runoff versus rainfall suggests that a linear relation-
ship holds.

> rainfall <- c(5, 12, 14, 17, 23, 30, 40, 47, 55, 67, 72, 81, 96, 112, 127)

> runoff <- c(4, 10, 13, 15, 15, 25, 27, 46, 38, 46, 53, 70, 82, 99, 100)

> hwy.runoff <- data.frame(rainfall=rainfall, runoff=runoff)

> plot(hwy.runoff$runoff ~ hwy.runoff$rainfall, pch=20, xlab="Rainfall", ylab="Runoff",

main="Highway")

> ## fit a simple linear regression

> fit <- lm(runoff ~ rainfall, data=hwy.runoff)

> abline(fit, col="red")

> ## Summary

> summary(fit)

Call:

lm(formula = runoff ~ rainfall, data = hwy.runoff)

Residuals:

Min 1Q Median 3Q Max

-8.279 -4.424 1.205 3.145 8.261

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.12830 2.36778 -0.477 0.642

rainfall 0.82697 0.03652 22.642 7.9e-12 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.24 on 13 degrees of freedom

Multiple R-squared: 0.9753, Adjusted R-squared: 0.9734

F-statistic: 512.7 on 1 and 13 DF, p-value: 7.896e-12
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b) An R2 of 0.98 is extremely high, i.e. a huge part of the variation in the data can be attributed to the
linear association between runoff and rainfall volume.

c) There is a significant linear association between runoff and rainfall volume, since the null hypothesis
β1 = 0 is clearly rejected.

As estimates we obtain β̂0 = −1.12, i.e. when it does not rain, the runoff is negative. Clearly, this is
not possible. Also note that we do not have observations at x = 0. Thus, interpreting the intercept is
an extrapolation. On the other hand, this also shows that this model might not be the best. Lastly,
we note that the estimate of the intercept is not significant.

For the slope we obtain β̂1 = 0.827. This value is smaller than 1 (even significantly smaller as the
95% confidence interval for the slope indicates). Thus, it is statistically shown that not all the rain
runs off via the canalization. It is plausible that part of the rain evaporates or trickles away.

d) > pred <- predict(fit, newdata=data.frame(rainfall=50), interval="prediction")

If the rainfall volume takes a value of 50 we find a runoff volume of 40.22 with a 95% prediction
interval of [28.53,51.92].

We can also draw the 95% prediction interval to the data.

> plot(hwy.runoff$runoff ~ hwy.runoff$rainfall, pch=20, xlab="Rainfall", ylab="Runoff",

main="Prediction Interval")

> abline(fit, col="red")

> interval <- predict(fit, interval="prediction")

> lines(hwy.runoff$rainfall, interval[,2], lty=3, col="red")

> lines(hwy.runoff$rainfall, interval[,3], lty=3, col="red")
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e) > par(mfrow=c(1,2))

> plot(fitted(fit), resid(fit), pch=20, main="Residuen vs. Fitted")
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> abline(h=0, lty=2)

> lines(loess.smooth(fitted(fit), resid(fit), span=0.9), col="red")

> qqnorm(resid(fit), pch=20); qqline(resid(fit))
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We check the model assumptions ((i) expectation of the errors is zero, (ii) constant error variance,
(iii) approximate Normal distribution) with the Tukey-Anscombe plot (residuals vs. fitted values)
(assumptions (i) and (ii)) and the normal plot (assumption (iii)). For the assumption of uncorrelated
errors there is no suitable plot in this case. However, this is no reason to assume that the errors are
uncorrelated.
While the Normal distribution of the errors seems to be satisfied, the Tukey-Anscombe plot (residuals
vs. fitted values) raises some doubts. Even though there is a large multiple R-squared and also the
test for the slope is highly significant, the expected value of the errors does not seem to be zero. The
smoother deviates systematically from the horizontal line. Similarly, it seems like the variance of the
residuals is larger at large rainfall values. Thus, the assumption of constant error variance might be
violated. As we shall see, we can describe the relation between runoff and rainfall more accurately
with a different simple linear regression model.

f) For each variable we create a histogram:

> par(mfrow=c(2,2))

> hist(hwy.runoff$rainfall, 8, main="Histogram of rainfall")

> hist(log(hwy.runoff$rainfall), 8, main="Histogram of log(rainfall)")

> hist(hwy.runoff$runoff, 8, main="Histogram of runoff")

> hist(log(hwy.runoff$runoff), 8, main="Histogram of log(runoff)")
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Runoff and rainfall volume are both variables which can only take positive values. Both are slightly
skewed to the right. In addition, the variance of the residuals is larger at large rainfall values. Thus,
a log-transformation is suitable for both variables.
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g) After fitting the new regression model, we need to exponentiate the fitted values in order to add them
to the original plot.

> par(mfrow=c(1,1))

> fit.loglog <- lm(log(runoff) ~ log(rainfall), data=hwy.runoff)

> plot(runoff ~ rainfall, data=hwy.runoff, pch=20, main="Highway")

> abline(fit, col="red")

> xx <- data.frame(rainfall=0:150)

> yy <- predict(fit.loglog, newdata=xx)

> lines(xx$rainfall, exp(yy), col="orange")

> legend("bottomright", lty=1, col=c("red", "orange"), legend=c("without trsf", "with trsf"))
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h) > summary(fit.loglog)

Call:

lm(formula = log(runoff) ~ log(rainfall), data = hwy.runoff)

Residuals:

Min 1Q Median 3Q Max

-0.20980 -0.10952 0.02828 0.08727 0.20388

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.18369 0.13803 -1.331 0.206

log(rainfall) 0.98917 0.03676 26.908 8.75e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1293 on 13 degrees of freedom

Multiple R-squared: 0.9824, Adjusted R-squared: 0.981

F-statistic: 724 on 1 and 13 DF, p-value: 8.748e-13

The relation was already strong without the transformation with a p-value of 10−12 corresponding to
the null hypothesis β1 = 0 and an R2 of 0.975. After the transformation these values are 10−13 and
0.982.

Additionally, this model is preferable from a practical point of view as it cannot yield negative runoff
values. Similarly, the coefficient β1 is easier to interpret. Without transformation, β̂1 = 0.827 means
that for an additional unit of rain, there are 0.827 additional units of runoff. With the transformation,
the interpretation is that for 1% of additional amount of rain, there is 0.989% of additional runoff. In
other words, 98.9% of the rain runs off via the canalization, the rest evaporates or trickles away.

i) > ## prediction

> new.x <- data.frame(rainfall=50)

> pred.y <- predict(fit.loglog, new.x, interval="prediction")

> exp(pred.y)
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fit lwr upr

1 39.88372 29.86744 53.25903

Note that the point prediction is not the expected value of the target but its median. If we want to
compute the former, we need to adjust as follows (cf. script p. 33):

> exp(pred.y[1] + (summary(fit.loglog)$sigma^2)/2)

[1] 40.21832

The predicted value is very close to the one from the model without log-transformations. This is not
true in general. In some cases, this difference can be large. Additionally, please note that the 95%
prediction interval is no longer symmetric:

> ## prediction and confidence interval

> plot(runoff ~ rainfall, data=hwy.runoff, pch=20, main="Highway")

> xx <- data.frame(rainfall=0:150)

> yy <- predict(fit.loglog, newdata=xx, interval="confidence")

> lines(xx$rainfall, exp(yy[,1]), col="red")

> lines(xx$rainfall, exp(yy[,2]), col="blue")

> lines(xx$rainfall, exp(yy[,3]), col="blue")

> yy <- predict(fit.loglog, newdata=xx, interval="prediction")

> lines(xx$rainfall, exp(yy[,2]), col="darkgreen")

> lines(xx$rainfall, exp(yy[,3]), col="darkgreen")
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The asymmetry is not very strong in this example. In other cases, it can be much stronger.

j) The residual plot with transformation looks better than the one without transformation. The improve-
ment is not very large, but the model with transformation is preferable nonetheless. Another reason
for this is the fact that the model with transformation cannot yield negative values – neither as fitted
values nor in the prediction interval. The transformed model predicts a runoff of 0 for a rainfall of 0
– which is another desirable property.

In summary, there are only small differences between the two models but the transformed model is
more appropriate.

> ## residuals plots

> par(mfrow=c(1,2))

> xx <- hwy.runoff$rainfall; yy <- resid(fit)

> plot(xx, yy, pch=20, main="Without trsf.")

> abline(h=0, lty=2)

> lines(loess.smooth(xx, yy, span=0.9, family="gaussian"), col="red")

> xx <- log(hwy.runoff$rainfall); yy <- resid(fit.loglog)

> plot(xx, yy, pch=20, main="With trsf.")

> abline(h=0, lty=2)

> lines(loess.smooth(xx, yy, span=0.9, family="gaussian"), col="red")
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Both of the Normal plots do not show any abnormalities:

> ## Normal plots

> par(mfrow=c(1,2))

> qqnorm(resid(fit), pch=20, main="Without trsf."); qqline(resid(fit))

> qqnorm(resid(fit.loglog), pch=20, main="With trsf."); qqline(resid(fit.loglog))
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5. a) The scatter plot shows that a OLS regression line does not describe the relation between the two
quantities appropriately. We need to apply a transformation.

> ## load data

> interval <- 1:15

> numberOfSurvingBact <- c(255, 211, 197, 166, NA, 106, 104, 60, 56, 38, 36, 32, 21, 19, 15)

> ## scatter plot

> par(mfrow=c(1,1))

> plot(interval, numberOfSurvingBact, pch=20)

> title("Surviving bacteria after intervals of radiation")

> ## regression

> fit.orig <- lm(numberOfSurvingBact ~ interval)

> ## add regressions line to plot

> abline(fit.orig, col="red")
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Surviving bacteria after intervals of radiation

b) As the “Residuals vs. Predictor” plot shows, the expected value of the errors is not equal to zero.
Instead there is a systematic deviation. The picture is typical for situations where a transformation
should be applied. The Normal plot does not show any problems. Please note, however, that it
does not make much sense to study the distribution of the residuals carefully since they belong to an
incorrect model. The residuals corresponding to the correct model will be different and may have a
different distribution.

> ## diagnostics plots

> par(mfrow=c(1,2))

> xx <- interval[-5]; yy <- resid(fit.orig)

> plot(xx, yy, pch=20, main="Residuals vs. Interval")

> abline(h=0, lty=2)

> lines(loess.smooth(xx, yy), col="red")

> qqnorm(resid(fit.orig), pch=20); qqline(resid(fit.orig))
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c) A log-transformation should be applied for the target value “number of surviving bacteria”. This
variable can only take positive values and the histogram shows a positive skew. For the predictor we
do not need to apply a transformation. The scale of the response is arbitrary, negative values could
also be used. In addition, the log-response model fulfills the hint given in the problem formulation:
per radiation interval the proportion of bacteria that is killed remains constant. From the estimate of
the coefficient β̂1 we can read off this value:

> fit.log <- lm(log(numberOfSurvingBact) ~ interval)

> exp(coef(fit.log)[2])

interval

0.8116327
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After each interval, 81.16% of the bacteria remain alive. In other words, on average 18.84% of the
bacteria are killed per interval.

d) The prediction on the original scale for the interval 5 can be obtained as follows:

> ## predictions and intervals

> new.x <- data.frame(interval=c(5))

> predi <- predict(fit.log, newdata=new.x, interval="prediction")

> ## prediction for the median of the conditional distribution when interval=5

> exp(predi)

fit lwr upr

1 124.0672 96.29711 159.8456

This value is the median of the conditional distribution. The expected value is slightly larger, namely

> ## prediction for the expected value of the conditional distribution when interval=5

> exp(predi + (summary(fit.log)$sigma^2)/2)[1]

[1] 124.8256

The estimate for the relative decrease in the number of surviving bacteria was already discussed above:

> ## proportional change after one interval

> exp(-0.208707)

[1] 0.811633

The 95% confidence interval is given by:

> ## confidence interval

> exp(confint(fit.log, "interval"))

2.5 % 97.5 %

interval 0.7998456 0.8235935

To estimate the expected number of bacteria at the beginning, we predict for the interval 0, together
with the confidence interval:

> ## starting value (i.e. interval=0), including confidence interval

> new.x <- data.frame(interval=c(0))

> predi <- predict(fit.log, newdata=new.x, interval="confidence")

> # prediction for the median of the conditional distribution when interval=0

> exp(predi)

fit lwr upr

1 352.2568 307.3775 403.6888

> # prediction for the expected value of the conditional distribution when interval=0

> exp(predi + (summary(fit.log)$sigma^2)/2)[1]

[1] 354.41


