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Generalized Additive Modelling (GAM)
Motivation:
We require a flexible regression method, similar to 1-dimensional 
smoothing, that also works in multiple regression setting.  

Background:
The generic multiple regression formula is:

As we have argued before, this is a too challenging problem, as 
there are just too many functions        . While in simple regression, 
visualization of the function is feasible, this is no longer the case in 
a multiple regression where           (“curse of dimensionality”).
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Solution 1: Linear Modelling with OLS
The canoncical approach for solving the multiple regression 
problem lies in using parametric linear models such as:

As we know, the predictors      may be transformed in any 
arbitrary way. However, there is no way around exactly 
specifying these transformations.

Since these models are linear in the parameters                   ,
there is (under some mild conditions) an analytical and unique 
solution if the OLS algorithm is used.
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Solution 2: GAM
A Generalized Linear Model is based on the following:

Here,          are smooth, flexible, 1-dimensional functions that 
don’t need to be explicitly defined by the user, but can be 
determined from the data in an explorative fashion. 

There are several approaches to determine the         . Some are 
better, some are worse. The most popular approach is based on 
cubic splines, as explained on the next few slides… 
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Simple (1-dimensional) GAM
We first explain the concept in 1-dimension, i.e. we only require 
to fit        . This is somewhat similar to smooting, but here we 
actually require a formula and not just visualization.

A very powerful approach is to express         using some simple 
basis functions (i.e. transformations of     ):

Here,      are some unknown coefficients that are to be estimated 
from data. Moreover,         are arbitrary but explicitly specified 
basis functions. The choice of      and the complexity of
controls the fit to the data. 
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Polynomial Basis Functions
A simple, yet intuitive choice for the basis functions          is given 
by powers of     , i.e. fitting a polynomial. In particular:

, resp. 

Polynomial basis functions have the following properties:

• They allow for a flexible, data-adaptive fit!!!

• Since each of the basis functions                    extends over
the entire range of predictor     , we may observe some erratic 
behavior, especially at the boundaries. 

• Some simulations results illustrate these drawbacks…
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Example 1
True functional relation:  33sin(2 )y x E 
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Example 2
True function relation: Density function of   2(0.5,0.15 )N
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Smoothing with Polynomial Basis Functions
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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Smoothing with Polynomial Basis Functions
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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Resampling on Example 1
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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Resampling on Example 2
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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What is a Better Alternative?
As the simulation results have shown us, using polynomial basis 
functions has some severe drawbacks and will not results in a 
fruitful generalized multiple regression approach. 

Idea: why not using basis functions that minimize

This criterion implements a trade-off between goodness-of-fit 
and smoothness of the function. Attractive, but how can we 
find a solution?

 The solution will always be a cubic B-spline!!!
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Regression Splines
We define a basis consisting of cubic B-splines on the interval

by imposing the following conditions on the knots, which 
are fixed at the observations               :

1) Each of the basis functions must be different from zero only 
over a range of 4 knots, so that its influence remains local. 

2) The basic form of          is a local polynomial of third order. 

3) These basis functions are twice continuously differentiable
at each of the knots. This implies smoothness of the fit
consisting of numerous local functions.

4) The integral over all basis functions shall be equal to 1.  
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Generating a Spline Basis
In R, such a regression spline basis can be generated conveniently:   

> set.seed(21)
> library (splines)
> funky <- function(x) sin(2*pi*x^3)^3
> xx <- seq (0, 1, by=0.01)
> yy <- funky(xx) + 0.1*rnorm (101)
> kn <-c(0,0,0,0,.2,.4,.5,.6,.7,.8,.85,.9,1,1,1,1)
> bx <- splineDesign (kn, xx)
> gs <- lm (yy ~ bx)
> matplot(xx, bx, type="l")
> matplot(xx, cbind (yy, gs$fit), type="pl")
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Spline Basis and Resulting Fit
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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GAM Using a Spline Basis
In practice, we will rarely be satisfied with simple models, but 
require fitting multiple predictor GAMs. The idea is as follows:

The principle is that for each predictor     , we will have a flexible 
and exploratively determined contribution         that is rooted on
a basis consisting of cubic B-splines with correct complexity.
There is an excellent implementation in R…

How can this model be estimated?

How can one determine the correct smoothness of         ?  
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Backfitting-Algorithm
There is no single step solution to a multiple predictor GAM. 
We pursue an iterative approach that is based on stepwise
solution of 1-dimensional problems:

1) Initialize             and                for all

2) Repeat for all                  until convergence:
- Compute
- Solve the 1-dimensional problem for          on
- Center  

Note: the solution will only be identifiable if 
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Implementation in library(mgcv)
• The backfitting-algorithm and in particular R function gam()

also allows for having parametric terms in the model.

• The estimation in R package mgcv is not based on the 
backfitting algorithm specified above, but on the more 
sophisticated Lanczos approach (w/o details here…).

• Syntax: fit <- gam(resp ~ s(p1) + s(p2) + p3, data=ex)

• The complexity of the spline basis for each component will
be estimated exploratively using cross validation. It may be 
overruled by typing s(p1, df=…).
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Example: Prestige Data 
> fit <- gam(prestige ~ s(income) + s(education), data=…)
> summary(fit)
Family: gaussian; Link function: identity 
Formula: prestige ~ s(income) + s(education)
---
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  46.8333     0.6889   67.98   <2e-16 ***
---
Approximate significance of smooth terms:

edf Ref.df F  p-value    
s(income)    3.118  3.877 15.29 8.94e-10 ***
s(education) 3.177  3.952 38.34  < 2e-16 ***
---
R-sq.(adj) =  0.836   Deviance explained = 84.7%
GCV = 52.143  Scale est. = 48.414    n = 102
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Example: Partial Residual Plots
> plot(fit, shade=TRUE, residuals=TRUE, pch=20, main=…)
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Example: Residual Analysis
> gam.check(fit, pch=20, rep=100)

Method: GCV   Optimizer: magic

Smoothing parameter selection converged after 4 iterations
The RMS GCV score gradiant at convergence was 9.783945e-05
The Hessian was positive definite.

The estimated model rank was 19 (maximum possible: 19)
Model rank =  19 / 19 

Basis dimension (k) checking results. 
Low p-value (k-index<1) may indicate that k is too low, 
especially if edf is close to k'.

k'   edf k-index p-value
s(income)    9.000 3.118   0.981    0.36
s(education) 9.000 3.177   1.025    0.61
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Example: Residual Analysis
> gam.check(fit, pch=20, rep=100)
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Example: Visualizing the Fit
> vis.gam(fit, theta=45, phi=30)
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2-Dimensional Fit Visualization

Note: both predictors
contribute in a non-
linear fashion, but
model is additive!
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Testen for Linearity
Function gam() determines the degrees of freedom for each of 
the predictors data-adaptively. If no flexibility is required, we can 
obtain df=1. In that case, the predictor contributes linearly. 

However, in many situations one may be interested in formally 
testing whether a GAM yields a better fit than using OLS. This 
can be done on the basis of a test that gauges RSS versus the 
degrees of freedom of the respective models.
> fit
Estimated degrees of freedom:
3.12 3.18  total = 7.3 

The GAM for the Prestige data spends 7.3 degrees of freedom. 
The competing OLS model only takes 3 of them!!!
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Testen for Linearity
> fit.ols <- gam(prestige ~ income + education, data=…)

Family: gaussian; Link function: identity 
Formula: prestige ~ income + education
Total model degrees of freedom 3 
GCV score: 62.84693     

> deviance(fit.ols)
[1] 6038.851

> dd <- deviance(fit.ols)-deviance(fit); dd
[1] 1453.856

> 1-pchisq(dd, 7.3-3)
[1] 0

The GAM has a highly significant edge on OLS. However, we 
need to use variable transformations in the OLS model.
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Testen for Linearity
There is some alternative (better) functionality that carries out the 
test for linearity as a one-line-command:
> anova(fit.ols, fit, test="Chisq")
Analysis of Deviance Table

Model 1: prestige ~ income + education
Model 2: prestige ~ s(income) + s(education)

Resid. Df Resid. Dev     Df Deviance  Pr(>Chi)    
1    99.000     6038.9                              
2    94.705     4585.0 4.2951   1453.9 6.783e-06 *** 

As we can see, the computed value for the test statistic is 
identical to the one one the previous slide. There is some 
rounding-based difference in the p-value, though.
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Non-Numerical Response Variable
 So far, the response was a continuous random variable 

with infinite range, where the conditional distribution was 
a Gaussian, i.e.                                , see next slide.

 If the task is modeling binary, binary or multinomial response
(i.e. probabilities or proportions) or a count, this is not doable
correctly with the methods that were discussed yet.

 We will present some additional techniques which implement
linear modeling for these different types of responses. As we
will see, there is a generic framework that incorporates all of 
these, as well as multiple linear regression.

iy
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Conditional Gaussian Distribution
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Binary Response / Logistic Regression
What is the question?
In toxicological studies, one tries to infer wheter a lab mouse
survives when it is given a particular dose of poisonous matter.
In human medicine, one is often interested in the question how
much of a drug is required to see an effect, i.e. pain reduction.

Mathematics:
 The response variable                  is binary
 The conditional distribution
 The fitted value is the expectation of the above conditional

distribution, and hence the probability of death/survival .
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Binary Response / Logistic Regression
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Count Response / Poisson Regression
What are predictors for the locations of starfish? 

 analyze the number of starfish at several locations, for which
we also have some covariates such as water temperature, ...

 the response variable is a count. The simplest model for this
assumes a Poisson as the conditional distribution.

We assume that the logged parameter at location i depends in 
a linear way on the covariates:

, where

i
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Generalized Linear Models
What is it?

• General framework for regression type modeling

• Many different response types are allowed

•  Notion: the responses' conditional expectation has a
monotone relation to a linear combination of the predictors.

• Some further requirements on variance and density of

 may seem complicated, but is very powerful!
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Binary Response / Logistic Regression
The essence of a logistic regression model is that the response

, the conditional distribution is
and we model the conditional expectation . 

What do we need to take care of?

• Formulation of the model

• Estimation

• Inference

• Model diagnostics

• Model choice

 0,1iy  | ~ ( )i i iy X Bernoulli p
[ | ]i i iE y X p
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Example
Premature Birth, by Hubbard (1986)

death (0) or survival (1) after premature birth.

Predictors:

- weight (in grams) at birth
- age at birth (in weeks of pregnancy)
- apgar scores (vital function after 1 and 5 min)
- pH-value of the blood (breathing)

Observations:

- there are 247 instances

 0,1iy 
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Example
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Logistic Regression Model
•                    has a Bernoulli distribution.

• The parameter of this distribution is , the success rate

Now please note that:

 the most powerful notion of the logistic regression model is to
see it as a model where we try to find a relation between the
conditional expected value of and the predictors! 

Important: is no good here! 
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Logit Transformation
Goal: mapping from

Logit transformation:

Interpretation: probabilities are mapped to logged odds
("Wettverhältnisse") which can then be modeled linearly.

 Logistic regression = describing log-odds with a linear model
 Can you explain why there is no error term?
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Some Remarks and Terminology
• For estimating the regression coefficients, we require the

observations to be independent.

• There is no restriction for the predictors. They can be
continuous, categorical, transformed, interactions, …

• is called the linear predictor

• is the link function, mapping from to

• There are other (less important) link functions:
- probit link
- c-log-log link

0 1 1 ...i i p ipx x      

( )g  [ | ]i iE y X i
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Estimation
Simple approach: minimize

 Not a good way to estimate logistic regression parameters

Maximum-Likelihood approach:
General principle: determine the regression coefficients such 
that the likelihood of the observed data is maximized. If the cases
are independent, this amounts to maximizing the log-likelihood:

with

Under mild conditions, the solution exists, but it cannot be written
in closed form. Usually, the IRLS algorithm is employed. 
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Estimation in R
> glm(survival~log10(weight)+age, 

family=binomial, data=baby)

Coefficients: (Intercept)  log10(weight)     age  
-33.9711        10.1685  0.1474  

These are the estimates for . Please note that they come
from a numerical optimization, thus don’t ignore this lightly:

Warning message:
glm.fit: algorithm did not converge

In this case, the coefficients are not trustworthy!  However, this
rarely happens in well posed regression problems.

0 1 2, ,  
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Displaying the Fit

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

linear predictor

su
rv

iv
al

Survival vs. Linear Predictor

 10 10( 1| log ( ), ) 33.97 10.17 log ( ) 0.14g P y weight age weight age      



600 800 1000 1200 1400

20
25

30
35

Survival after Premature Birth

weight

ag
e

43Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Displaying the Fit
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Interpretation of the Coefficients
 see blackboard…
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Inference for Logistic Regression
While the basic concepts of inference will be familiar from multiple 
linear regression, various aspects will be markedly different. 

Most importantly, the concept for the goodness-of-fit measure
needs a second thought. We cannot work with the residuals sum
of squares anymore, but employ the so-called Residual Deviance:

Also of importance is the Null Deviance, which is the deviance of 
the simplest possible model that is built from the intercept term
only. It is always lower than the Residual Deviance.

 
1

ˆ ˆ ˆ( , ) 2 log( ) (1 ) log(1 )
n

i i i i
i

D y p y p y p


     
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Summary Output from R
> summary(glm(survival ~ log10(weight) + age, data=baby,

family=binomial(link="logit"))

Deviance Residuals: ...

Coefficients:     Estimate Std. Error z value Pr(>|z|) 
(Intercept)      -33.97108    4.98983  -6.808 9.89e-12 ***
I(log10(weight))  10.16846    1.88160   5.404 6.51e-08 ***
age                0.14742    0.07427   1.985   0.0472 * 
---
Dispersion parameter for binomial family taken to be 1
Null deviance: 319.28  on 246  degrees of freedom
Residual deviance: 235.94  on 244  degrees of freedom
Number of Fisher Scoring iterations: 4
AIC: 241.94
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Coefficient of Determination
There is no direct analogon to the coefficient of determination in 
logistic regression. Some suggestions for the COD include:

Proportion of deviance explained
> 1-fit$dev/fit$null
[1] 0.2610193

A better statistic for measuring the explanatory content

 There are even more suggestions in the literature.

2 1 exp(( ) / ) 0.395
1 exp( / )

res null

null

D D nR
D n

 
 

 



48Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Inference: Individual Parameter Tests
Multiple Linear Regression:

Gaussian errors are normally distributed

Logistic Regression:

There are no errors, variability arises from Bernoulli distribution

MLE-theory tells us that under mild conditions, the coeffcients
are approximately normally distributed with a covariance

matrix that can be derived from the coefficients. 

Hence: If then use

ˆ
j

ˆ
j

V

ˆ

ˆ
~ (0,1)

ˆ
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Inference: 95%-CI for the Coefficients
It is straightforward to generate a hand-constructed 95%-CI:

Rather than using the approximate 2 for the 97.5%-quantile of 
the Gaussian distribution, we can use the exact values. For
log10(weight), we so obtain:

> 10.16846+qnorm(c(0.025,0.975))*1.88160
[1] 6.480592 13.856328

However, in R it is more convenient to use confint() which
here uses a slighty different, more sophisticated and exact
computation by interpolation of the likelihood profile traces. 

ˆ
ˆ ˆ ˆ ˆ2 ( ) 2

j
j j jse


       

j
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Inference: Comparing Hierarchical Models
Analogon to the partial F-test in multiple linear regression

Big Model: has coefficients
Small Model: has coefficients

Null hypothesis:

MLE theory suggests to use the likelihood ratio or log-likelihood
difference as a test statistic. This amounts to taking the difference
of the residual deviances. It asymptotically follows a Chisquare
distribution with degrees of freedom: 

0 1 2: ... 0q q pH       

      2
( )ˆ ˆ2 , , ~Big Small

Small Big p qll ll D y p D y p    

( 1)p  0 1, ,..., ,...,q p   
( 1)q  0 1, ,..., q  
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Example: Global Test
Idea: Compare the actual model against the simplest possible

model with only the intercept. The latter fits the overall
success ratio to all observations.

Since our actual model and the null model are nested, we can
perform a hierarchical model comparison. In the baby survival
example, there are two predictors and hence:

The two deviances are reported in the summary output. 
Null deviance: 319.28  on 246  degrees of freedom

Residual deviance: 235.94  on 244  degrees of freedom

ˆ /Null ip y n

    2
2ˆ ˆ, , ~Null BigD y p D y p 
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Example: Global Test
A quick and simple check for rejection of                          is to
compare the difference in deviance vs. the difference in degrees
of freedom. 

If then reject

The exact p-valued can be computed in R by:
> 1-pchisq(fit$null-fit$dev, df=(fit$df.null-fit$df.res))

[1] 0

The p-value is (numerically) zero, hence the null hypothesis is
very clearly rejected. Conjecture: there is a strongly significant
contribution of log10(weight) and age to the odds for survival.

ˆ ˆ( , ) ( , ) ( )Null BigD y p D y p p q 

0 1 2: 0H   
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Using drop1() for Testing
The R function drop1() performs hierarchical model
comparison for exclusion of one model term at a time.

> drop1(fit, test="Chisq")
Single term deletions
Model: survival ~ I(log10(weight)) + age

Df Deviance    AIC    LRT   Pr(Chi)  
<none>                235.94 241.94    
log10(weight)     1   270.19 274.19 34.247 4.855e-09 ***
age               1   239.89 243.89  3.948   0.04694 *  

Question:
- where is the difference to the summary output?
- it exists, though it‘s not obvious and asymptotically vanishes



54Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Model Diagnostics
Diagnostics are:

• in principle as important with logistic regression as they are
with multiple linear regression models, but more difficult.

• again based on differences between fitted & observed values

we have to take into account that the variance of the response
residuals is non-constant.

we have to come up with novel types of residuals:

Pearson and Deviance residuals

ˆi i ir y p 
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Pearson Residuals
Take response residual (difference between observed and fitted
value) and divide by an estimate of its standard deviation:

 is the contribution of the ith observation to the Pearson 
statistic for model comparison (that we did not discuss).

 It is important to note that Pearson residuals exceeding a 
value of two in absolute value warrant a closer look. They
appear if an observation with resp.              in reality
has class label 0 resp. 1.  

ˆ
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Deviance Residuals
Take the contribution of the ith observation to the log-likelihood, 
i.e. the chi-square statistic for model comparison.

For obtaining a well interpretable residual, we take the square 
root and the sign of the difference between true and fitted value:

 - deviance residuals > 2 warrant a closer look.
- the distribution of the deviance residuals is not known.

 ˆ ˆlog( ) (1 ) log(1 )i i i i id y p y p     

ˆ( )i i i iD sign y p d  
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Model Diagnostics in R
The 4 standard plots are not well suited for logistic regression!!!
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Improved Tukey-Anscombe Plots
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Improved Tukey-Anscombe Plot
It is mandatory to use a non-robust smoother in the TA plot!
xx <- predict(fit, type="response")
yy <- residuals(fit, type="pearson")
loess.smooth(xx, yy, family="gaussian", pch=20)
abline(h=0, lty=3)

Remarks:
- On the y-axis, use Pearson or Deviance residuals
- On the x-axis, use the linear predictor or probabilities
- One can, but does not have to use studentized residuals
- The LogReg residuals do not follow a Gaussian distribution
- The LogReg residuals always lie on two curves
- Residual analysis is easier with grouped data!
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AIC and Variable Selection
General remark:

All comparison between models of different size can also be
done using the AIC criterion. Not only in logistic regression, but 
also here.

The criterion:

Variable selection:

- stepwise approaches as with multiple linear regression
- factor variables need to be treated the right way!

ˆ( , ) 2iAIC D y p p 
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Binomial Regression Models

 For the number of killed insects, we have

We are mainly interested in the proportion of insects surviving

 These are grouped data for which we do binomial regression. 
We could run a logistic regression with 243 observations
instead, but the grouped data approach is more powerful!

Concentration
in log of mg/l

Number of
insects n_i

Number of
killed insects y_i

0.96 50 6
1.33 48 16
1.63 46 24
2.04 49 42
2.32 50 44

~ ( , )i i iy Bin n p
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Model and Estimation
The goal is to find a relation:

We will again use the logit link function such that

Here,     is the expected value             , and thus, also this model 
here fits within the GLM framework. The log-likelihood is:
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Fitting with R
We need to generate a two-column matrix where the first
contains the “successes” and the second contains the “failures”

> killsurv
killed surviv

[1,]      6     44
[2,]     16     32
[3,]     24     22
[4,]     42      7
[5,]     44      6

> fit <- glm(killsurv~conc, family="binomial")
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Summary Output
The result for the insecticide example is:

> summary(glm(killsurv ~ conc, family = "binomial")

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -4.8923     0.6426  -7.613 2.67e-14 ***

conc          3.1088     0.3879   8.015 1.11e-15 ***

---

Null deviance: 96.6881  on 4  degrees of freedom

Residual deviance:  1.4542  on 3  degrees of freedom

AIC: 24.675
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Proportion of Killed Insects
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Global Tests for Binomial Regression
For GLMs there are three tests that can be done:

• Goodness-of-fit test
- based on comparing against the saturated model
- not suitable for non-grouped, binary data

• Comparing two hierarchical models
- likelihood ratio test leads to deviance differences
- test statistics has an asymptotic Chi-Square distribution

• Global test
- comparing versus an empty model with only an intercept
- this is a nested model, take the null deviance



67Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Goodness-of-Fit Test
 the residual deviance will be our goodness-of-fit measure!

Paradigm: take twice the difference between the log-likelihood
for our current model and the saturated one, which fits
the proportions perfectly, i.e.

Because the saturated model fits as well as any model can fit, the 
deviance measures how close our model comes to perfection. 
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Evaluation of the Test
Asymptotics:
If      is truly binomial and the     are large, the residual deviance is 
approximately     distributed. The degrees of freedom is:

> 1 - pchisq(deviance(fit), df.residual(fit))

[1] 0.69287

Quick and dirty:
:  model is not worth much. 

More exactly: check
 only apply this test if at least all 

iY in
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Overdispersion
What if ???

1) Check the structural form of the model
- model diagnostics
- predictor transformations, interactions, …

2) Outliers
- should be apparent from the diagnostic plots

3) IID assumption for within a group
- unrecorded predictors or inhomogeneous population
- subjects influence other subjects under study

Deviance df

ip
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Overdispersion: a Remedy
We can deal with overdispersion by estimating:

This is the sum of squared Pearson residuals divided with the df

Implications:

- regression coefficients remain unchanged
- standard errors will be different: inference!
- need to use an F-test for comparing nested models

22
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Results when Correcting Overdispersion
> phi <- sum(resid(fit)^2)/df.residual(fit)

> phi

[1] 0.4847485

> summary(fit, dispersion=phi)

Estimate Std. Error z value Pr(>|z|)   

(Intercept)  -4.8923     0.4474  -10.94   <2e-16 ***

conc          3.1088     0.2701   11.51   <2e-16 ***

---

(Dispersion parameter taken to be 0.4847485)

Null deviance: 96.6881  on 4  degrees of freedom

Residual deviance:  1.4542  on 3  degrees of freedom

AIC: 24.675



72Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Global Tests for Binomial Regression
For GLMs there are three tests that can be done:

• Goodness-of-fit test
- based on comparing against the saturated model
- not suitable for non-grouped, binary data

• Comparing two hierarchical models
- likelihood ratio test leads to deviance differences
- test statistics has an asymptotic Chi-Square distribution

• Global test
- comparing versus an empty model with only an intercept
- this is a nested model, take the null deviance
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Testing Hierarchical Models / Global Test
For binomial regression, these two tests are conceptually equal
to the ones we already discussed in binary logistic regression.

We refer to our discussion there and do not go into further
detail here at this place!

Null hypothesis and test statistic:

Distribution of the test statistic:

0 1 2: ... 0q q pH       

     ( ) ( ) ( ) ( )ˆ ˆ2 , ,B S S Bll ll D y p D y p  

( ) ( ) 2~S B
p qD D  



74Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Practical Example
With this example taken from the lecturer’s research, we
illustrate the pro’s and con’s of working with logistic vs. binomial
regression, i.e. grouped vs. non-grouped data

CHURN REGION GENDER AGE TENURE PRODUCT
1 D-CH male 65 84 PH + INET + TV
1 F-CH female 45 34 INET + TV
1 F-CH female 68 52 INET + TV
1 D-CH female 102 INET
1 D-CH male 45 21 TV
1 D-CH male 43 63 PH + INET + TV
1 I-CH male 28 47 TV
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Practical Example
Goal: understanding churn, i.e. end of contract

Model: churn ~ region + gender + age + tenure + product

The data per se are non-grouped, with millions of observations. 
But in this problem, it pays off to work with grouped data. 
The main advantages when doing so are:

• Dealing with missing values in age and tenure: we do not 
lose any observations when factorizing these two variables. 

• Instead of millions of rows, the design matrix is reduced to
just 885 rows. This speeds up the computing tremendously.

• Much better inference and residual analysis is possible!
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Aggregating the Data in R
## Aggregating the data
> gdat <- aggregate(dat$churn,by=list(dat$region, dat$sex,

dat$age.group, dat$dauer.group, 
dat$produkt),table)

## Excerpt of the data
> gdat[c(34, 92, 122, 588),]

region sex age dauer produkt churn.no churn.yes
34    F-CH   male Missing [0,24]   PHON       53         8
92    F-CH   male (45,60] (72,180]      PHON       50         6
122   F-CH female (30,45]    [0,24]   TV      826       194
588   F-CH female (45,60] (72,180]   INET+TV      103   14

Now, there are groups, of which only 885 are
populated. We will now fit a binomial regression model using
only the main effects (i.e. without any interaction terms).  

3 3 6 3 7 1134    
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Summary Output
> drop1(fit, test="Chisq")

Model: churn ~ region + sex + age + dauer + produkt

Df Deviance     AIC    LRT  Pr(>Chi)    
<none>       2866.6  6254.7                     
region   2   3212.0  6596.1  345.4 < 2.2e-16 ***
sex      2   3344.4  6728.5  477.8 < 2.2e-16 ***
age      5   6745.2 10123.3 3878.6 < 2.2e-16 ***
dauer 2   4172.9  7557.0 1306.3 < 2.2e-16 ***
produkt 6  10718.3 14094.4 7851.7 < 2.2e-16 ***
---
Null deviance: 19369.7  on 884  degrees of freedom
Residual deviance:  2866.6  on 867  degrees of freedom

 Very strong overdispersion, the model does not fit well!
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Model Diagnostics
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Detail: Residuals vs. Predicted
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Discussion of the Practical Example
The analysis of grouped data shows that we have a very
incomplete understanding of the churn mechanics. There
are groups for which the churn probability is very strongly
over- or underestimated. All-in-all, the goodness-of-fit test
for our binomial model is rejected.

What to do?

• Use more and/or better predictors for churn. 
• If not available, try to work with interaction terms.
• Using a dispersion parameter doesn’t help for prediction!
• Models can/should also be evaluated using cross validation.
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Poisson-Regression
When to apply?

• Generally, if the response variable is a count. However:
- for bounded counts, the binomial model can be useful
- for large numbers the normal approximation can serve

• The use of Poisson regression is a must if:
- the counts are small and/or population size unknown
- the population size is big and hard to come by, and
the probability of an event, resp. the counts are small. 

Model, Estimation, Inference:
Poisson Regression fits within the GLM framework!
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Example: Tortoise Species on Galapagos
The data are as follows:
> library(faraway); data(gala); head(gala[,-2])

Species Area Elevation Nearest Scruz Adjacent
Baltra 58 25.09 346 0.6 0.6 1.84
Bartolome 31 1.24 109 0.6 26.3 572.33
Caldwell 3 0.21 114 2.8 58.7 0.78
Champion 25 0.10 46 1.9 47.4 0.18
Coamano 2 0.05 77 1.9 1.9 903.82
Daphne.Major 18 0.34 119 8.0 8.0 1.84

Because the predictors all take positive values only and are
skewed to the right, we urgently need transformations, namely:

 a log-transformation for all variables!
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Trying Multiple Linear Regression
> fit03 <- lm(log(Species) ~ log(Area) + ..., data=gala[,-2])

The normal plot
is fine and there
are no outliers.

But it seems
that the relation
has a bias. The 
variance is . 

Model needs to
be improved!
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Poisson Regression: Theory
We have count response:

 The goal is to relate the parameter , which is also the con-
ditional expectation linearly to the predictors. 
Since it takes positive values only, we require a log-trsf:

This is a GLM. The coefficients can be estimated by MLE. 
Assuming independence, the likelihood function is:
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Poisson Regression: R Commands
> fit <- glm(Species ~ log(Area)+..., family=poisson, data=...)
> summary(fit)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.323245 0.286430 11.602 < 2e-16 ***
log(Area) 0.350370 0.018005 19.459 < 2e-16 ***
log(Elevation) 0.033108 0.057034 0.580 0.56158
log(Nearest) -0.040153 0.014071 -2.854 0.00432 **
I(log(Scruz + 0.4)) -0.035848 0.013207 -2.714 0.00664 **
log(Adjacent) -0.089452 0.006944 -12.882 < 2e-16 ***
---

Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 359.94 on 24 degrees of freedom
AIC: 532.77

 These results are based on numerical optimization. 
Thus, watch the convergence of the IRLS algorithm.



86Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Does the Model Fit?
Quick check:

More precisely:

Thus, when testing , we obtain:

> pchisq(359.94, 24, lower=FALSE)
[1] 1.185031e-61

 The model does not fit well. There is (much) more variation
in the response than the Poisson distribution alone suggests. 
Why is this and where does it come from?

Diagnostic plots / visualization is key!
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Residual Analysis
Analyze deviance or (as in R) Pearson residuals:

approx.

Thus, residuals are bigger than the Poisson distribution
suggests. And even larger residuals would not exists if
the Poisson model was correct.  

> xx <- predict(fit, type="link")
> yy <- resid(fit, type="pearson")
> plot(xx, yy, main="Tukey-Anscombe Plot...")
> lines(loess.smooth(xx, yy), col="red")
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Tukey-Anscombe Plot
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Dealing with Overdispersion
If the predictor-response relation is correct, but the variation is
observed to be bigger than the distribution model suggests:

and unbiased
Standard errors are wrong

Standard errors are corrected using a dispersion parameter:

In R:
> sum(resid(fit, type="pearson")^2)/fit$df.res
[1] 16.64651
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î



90Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Final Result
> summary(fit, dispersion=16.64651)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.32325 1.16864 2.844 0.00446 **
log(Area) 0.35037 0.07346 4.769 1.85e-06 ***
log(Elevation) 0.03311 0.23270 0.142 0.88686
log(Nearest) -0.04015 0.05741 -0.699 0.48430
I(log(Scruz + 0.4)) -0.03585 0.05389 -0.665 0.50589
log(Adjacent) -0.08945 0.02833 -3.157 0.00159 **
---
Dispersion parameter for poisson family: 16.647
Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 359.94 on 24 degrees of freedom
AIC: 532.77

 Inference result is similar to the one from multiple linear 
regression. Mathematics says: this is not a surprise!


