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Screening Experiments (Roth, 2013)

= Production processes often involve many factors:
= material
= eqguipment
= intermediate products (producer, storage, ...)
= conditions (temperature, humidity, pressure)
= personnel

= Typical questions are:
= Which factors have an effect on the response?

= What is the effect of the important factors?
= main-effects only?
= what about interaction effects?

= When you have to answer such questions you are
basically always confronted with the “side constraint” that
you are not allowed to run too many experiments.



Screening Experiments (Roth, 2013)
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Figure 1.1. Flow Chart, Pulp Manufacturing Process.



Screening Experiments (Roth, 2013)

= E.g., if you have 7 factors with 3 levels each and want to .
run an experiment for every possible setting a total of _&g
37 = 2187 experiments have to be performed. |

= An “easy trick” to reduce the number of experiments is
to reduce the number of levels per factor. Typical and
(minimal) choice is 2 levels.

= |n the previous example it would mean that we “only”
have to run 27 = 128 experiments.

= However, we might risk to miss some effects if we make
bad choices for the factor levels.



Screening Experiments (Roth, 2013)

= |tis not advisable to run experiments by varying or
optimizing the factors “one by one”.

= Only a factorial experiment where we see all (or many)
possible combinations of factor levels will allow us to say
something about possible interactions between the

Involved factors.



Two-Series Factorials

= Atwo-series factorial design is a factorial design where
all the factors have just two levels that we typically call
“low” and “high”.

= |f we have a total of k factors, we call it a 2% design.

= Acomplete or full 2% design is a 2* design where we
observe all 2% possible settings.

= Afractional 2* design is a 2% design where we only
observe a subset of all possible combinations.

= A 2¥ design is typically the first step in the optimization of
complex production processes in order to find out the
Important factors affecting the response (“screening”).



Two-Series Factorials

= We are in a “standard” ANOVA situation with some

“historical” specialties with respect to
= |labeling of factor level combinations

= estimation of effects

= graphical analysis of effects

= Assume that we have three factors A4, B, C with two levels
each (“low” and “high”).

= A specific factor level combination is typically abbreviated
with a string of lower-case letters.

= E.g., we denote by acd the setting (observation) (not the
Interaction!) where A, C and D are set to the level “high”
and B to the level “low”.



Two-Series Factorials: 22 design

= Hence, in a 23 design we have the following 23 = 8
possible configurations.

I Y N R
(D . = s
a + — —
b — + —
ab + + —
c — — +
ac + — +
bc — + +
abc + + +

= Here a “+" means “high” and a “—" means “low”.



Two-Series Factorials: 22 design

= |n our “old layout” of a factorial design this would be as
follows

| Alow | Ahigh
B low (D a
B high b ab

= Here we dropped the third factor C (or set it to level “low”)
for illustrational reasons.



Two-Series Factorials: Visualization of 23 design
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Example: Cooling Time of Cement (Roth, 2013)

Response: cooling time of cement [minutes]

Involved factors with two levels each
= stirring time (A)

= temperature (B)

= pressure (C)

Data (rows are observations)

)i‘”

(1) 297
178
a 300 _
C: pressure
b 106
ab 131
c 177 I(D (1%
ac 178 / /
\ B: temperature
bc 76 297
—
abc 109 10

A: stirring time



Two-Series Factorials: ANOVA Table

= The ANOVA table of a two-series factorial is set up “as
usual”.

= |t has the special property that whatever effect we are
looking at, it always has one degree of freedom.

s
4 (L)
: e
C
AB
AC
BC
ABC

—

0

N = T = S SN SN

= This means that every effect can be estimated with a
single contrast.
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Two-Series Factorials: Parameter Estimation

= Consider factor A.

= |f we use the sum-to-zero constraint we have for the
corresponding parameter: a, = —a&;.

= \We call the difference

Y2.— V1. = (\)72..— 3_’...), — 971..

I

I
D

37...?:072— 1=2-0,

D

the total effect of A.

= On the left-hand side we have the average of the
response where A is set to “high” minus the average of
the response where A is set to “low”.

1

= This is exactly the (weighted) “contrast pattern” that we

13 7

saw in the table if we interpret “+” as 1 and “—" as —1.
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Two-Series Factorials: Parameter Estimation

= The same holds true for all other main-effects.

= The pattern of the contrasts corresponding to the
Interaction terms is the product of the involved patterns
of main-effects, I.e.

| x| A ] B | C | AB | AC_| BC | ABC__
— — + + + —

(1) + =
a + + — — — — + L
+ - + - . + . +
ab + + + — + — — —
c + - - + + - — +
ac + + - + — + — —
bc + - + + — - + —
abc + + + + + + + +
weight 1/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4
et?fteagt z 2. 2 '32 272 2 (/“\:8)22 2 (/‘17)22 2 (737)22 2 (E[W)zzz

estimate ~ 171.75 15.5 —132.5 -73.5 13.5 1.5 47.5 2.5
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Two-Series Factorials: Parameter Estimation

= Compare with output of R (see R-file).

= How can we test the contrasts (factors) or construct
confidence intervals?

= |f we have a complete 2* design and if we assume the
standard ANOVA model with an error variance of a2 we
have for each estimated effect (contrast) a variance of

2 2
Zk 1 2k 2

/

due to weight | | due to sum

= |n addition, if the true effect is zero, the expected value of
every estimated effect (contrast) Is zero too.

= Last but not least, the estimated effects are normally
distributed and independent.
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Two-Series Factorials: Inference

= Hence, estimates corresponding to “null effects”
behave like independent samples from a normal
distribution with mean 0 and constant variance.

= |f we use the full model (i.e., including all interactions) we
do not have any df's left for the error term if we have no
replicates.

= However, thanks to the aforementioned properties we can
do a graphical “analysis” of the effects using

= pareto chart
= halfnormal plot

of the estimated effects.
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Two-Series Factorials: Pareto Chart

= Barplot of absolute value of estimated effects.

= Can we identify two groups?
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Two-Series Factorials: Half-Normal Plot

= Plot sorted absolute effect values against quantiles of
absolute value of a standard normal distribution.

= Can we detect any outliers?
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Two-Series Factorials: Analysis

= |f we drop the 3-way interaction we have 1 (!) degree of
freedom left for estimating the error variance.

= \We can do tests In this situation

> fit2 <- aov(y ~ (time + temp + press)A2, data = cement)
> summary(fit2)

Df sum Sq Mean Sq F value Pr(>F)
time 1 480 480 38.44 0.1018

temp 1 35112 35112 2809.00 0.0120 *
press 1 10804 10804 864.36 0.0216 *
time:temp 1 364 364 29.16 0.1166
time:press 1 5 5 0.36 0.6560
temp:press 1 4512 4512 361.00 0.0335 ~+
Residuals 1 13 13

= This basically confirms the graphical analysis.

= However: effect size is at least as important as statistical
significance!
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Confounding the Two-Series Factorial

Assume that we cannot do a complete 2* design in one
day but that we are able to do half of the settings in one
day.

How should we “distribute” the factor level combinations
over the two days?

We do it by using confounding...

b

The idea is to “sacrifice” some effects in order to “protect
the important ones.

Splitting up the experiment in two blocks means losing
efficiency as we have an incomplete block design (a
day is a block).

The confounded effects are “lost”, while the others are
“protected”.

19



Confounding the Two-Series Factorial

= Example: What happens if we use the following
experimental design:

_ JDbay x| A | B | C|AB|AC]|BC ABC
) )
- |- - + + + -

(1) 1 +
a 2 + |+ - - - - + +
b 1 + -1+ - - + - 4+
ab 2 + |+ 1+ - + - - -
c 1 + |- 1- + + - - +
ac 2 + + — + — + — -
bc 1 + — + + — — + —
abc (2 ) + [+ ) + + + + + +

= We are not able to distinguish the effect of A from the
effect of Day.

= A is confounded with Day in this setup. Hence, this was A
not a good choice because we sacrificed a main-effect!
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Confounding the Two-Series Factorial

We say that we confounded the 2% design into two blocks
of size 21,

However, our confounding choice was not optimal as we
sacrificed a main-effect.

Better: use a high-order interaction as so called defining
contrast.

The idea Is to have a look at the column of the defining

contrast: all “+” go in one block and all “—" go in the other
block.

We have completely “lost” the defining contrast as it is
confounded with block.
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Confounding the Two-Series Factorial

= Hence, if we use the 3-way interaction as defining
contrast we get

_ JDay | p [ A | B | C |AB|AC]BC|ABC,
) )
e S S S

(1) 1 +

a 2 + + — - — — + +
b 2 + - + - - + -1+
ab 1 + + + — + — — —

c 2 + - - + + - -1+
ac 1 + + — + — + — —
bc 1 + - + + - -  + | -

abc | 2 )+ + + + + + 4+ [+

= Here, we would run the configurations (1), ab, ac, bc on
day 1 and a, b, c,abc on day 2.
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Confounding the Two-Series Factorial

= The block containing (1) is called the principal block
while the other block is called the alternate block.

= What if we want to build more than two blocks?

= Say we want to confound a 2* design into 4 blocks of size
4 (4 = 22).

= Start with two defining contrasts, say ABC and BCD.

= QOur 4 blocks are built by using as “block assignment” the
4 different combinations of ABC and BCD, that is

- - 1

2
— 3
4
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Confounding the Two-Series Factorial

As we have 4 blocks (i.e., 3 df's) there must be a third
effect that we are confounding.

It is the effect that is given by the product of the two
effects which is

ABC - BCD = AB*C*D = AD
The rule Is: squared terms are disappearing.

AD is also called the generalized interaction of ABC and
BCD.

If we would choose ABCD and BCD as defining contrasts,
the generalized interaction would we A4, i.e. we would

confound the main-effect of A é
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Analysis of Confounded Two-Series Factorials

= |f we have replicates, we can do the “standard” ANOVA as
we have an estimate for the error term.

= |f we have no replicates, we can either pool some of the
higher-order interactions into the error term (i.e., not using
them in the model) or use the graphical tools presented
earlier.

= The difficult part here was the design, not the analysis.
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