
Lukas Meier, Seminar für Statistik

Two-Series Factorials



 Production processes often involve many factors:
 material

 equipment

 intermediate products (producer, storage, …)

 conditions (temperature, humidity, pressure)

 personnel

 Typical questions are:
 Which factors have an effect on the response?

 What is the effect of the important factors?
 main-effects only?

 what about interaction effects?

 When you have to answer such questions you are 

basically always confronted with the “side constraint” that 

you are not allowed to run too many experiments.

Screening Experiments (Roth, 2013)
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Screening Experiments (Roth, 2013)



 E.g., if you have 7 factors with 3 levels each and want to 

run an experiment for every possible setting a total of 

37 = 2187 experiments have to be performed.

 An “easy trick” to reduce the number of experiments is 

to reduce the number of levels per factor. Typical and 

(minimal) choice is 𝟐 levels.

 In the previous example it would mean that we “only” 

have to run 27 = 128 experiments.

 However, we might risk to miss some effects if we make 

bad choices for the factor levels.
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Screening Experiments (Roth, 2013)



 It is not advisable to run experiments by varying or 

optimizing the factors “one by one”.

 Only a factorial experiment where we see all (or many) 

possible combinations of factor levels will allow us to say 

something about possible interactions between the 

involved factors.
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Screening Experiments (Roth, 2013)



 A two-series factorial design is a factorial design where 

all the factors have just two levels that we typically call 

“low” and “high”.

 If we have a total of 𝑘 factors, we call it a 𝟐𝒌 design.

 A complete or full 2𝑘 design is a 2𝑘 design where we 

observe all 2𝑘 possible settings.

 A fractional 2𝑘 design is a 2𝑘 design where we only 

observe a subset of all possible combinations.

 A 2𝑘 design is typically the first step in the optimization of 

complex production processes in order to find out the 

important factors affecting the response (“screening”).

Two-Series Factorials
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 We are in a “standard” ANOVA situation with some 

“historical” specialties with respect to
 labeling of factor level combinations

 estimation of effects

 graphical analysis of effects

 Assume that we have three factors 𝐴, 𝐵, 𝐶 with two levels 

each (“low” and “high”).

 A specific factor level combination is typically abbreviated 

with a string of lower-case letters.

 E.g., we denote by 𝑎𝑐𝑑 the setting (observation) (not the 

interaction!) where 𝐴, 𝐶 and 𝐷 are set to the level “high” 

and 𝐵 to the level “low”.
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Two-Series Factorials



 Hence, in a 23 design we have the following 23 = 8
possible configurations.

 Here a “+” means “high” and a “−” means “low”.
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Two-Series Factorials: 𝟐𝟑 design

A B C

(1) − − −

𝑎 + − −

𝑏 − + −

𝑎𝑏 + + −

𝑐 − − +

𝑎𝑐 + − +

𝑏𝑐 − + +

𝑎𝑏𝑐 + + +
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Two-Series Factorials: 𝟐𝟑 design

 In our “old layout” of a factorial design this would be as 

follows

 Here we dropped the third factor 𝐶 (or set it to level “low”) 

for illustrational reasons.

A low A high

B low (1) 𝑎

B high 𝑏 𝑎𝑏
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Two-Series Factorials: Visualization of 𝟐𝟑 design

Factor 𝐴

Factor 𝐵

Factor 𝐶

low high

high

high



 Response: cooling time of cement [minutes]

 Involved factors with two levels each
 stirring time (𝐴)

 temperature (𝐵)

 pressure (𝐶)

 Data (rows are observations)

𝐴: stirring time

𝐵: temperature

𝐶: pressure
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Example: Cooling Time of Cement (Roth, 2013)

Setting 𝒚

(1) 297

𝑎 300

𝑏 106

𝑎𝑏 131

𝑐 177

𝑎𝑐 178

𝑏𝑐 76

𝑎𝑏𝑐 109



 The ANOVA table of a two-series factorial is set up “as 

usual”.

 It has the special property that whatever effect we are 

looking at, it always has one degree of freedom.

 This means that every effect can be estimated with a 

single contrast.
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Two-Series Factorials: ANOVA Table

Source df

𝐴 1

𝐵 1

𝐶 1

𝐴𝐵 1

𝐴𝐶 1

𝐵𝐶 1

𝐴𝐵𝐶 1



 Consider factor 𝐴.

 If we use the sum-to-zero constraint we have for the 

corresponding parameter:  𝛼2 = −  𝛼1.

 We call the difference 

 𝑦2.. −  𝑦1.. = ( 𝑦2..−  𝑦...) − ( 𝑦1.. −  𝑦...) =  𝛼2 −  𝛼1 = 2 ⋅  𝛼2

the total effect of 𝐴.

 On the left-hand side we have the average of the 

response where 𝐴 is set to “high” minus the average of 

the response where 𝐴 is set to “low”.

 This is exactly the (weighted) “contrast pattern” that we 

saw in the table if we interpret “+” as 1 and “−” as −1.
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Two-Series Factorials: Parameter Estimation

=  𝛼2 =  𝛼1



 The same holds true for all other main-effects.

 The pattern of the contrasts corresponding to the  

interaction terms is the product of the involved patterns

of main-effects, i.e.
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Two-Series Factorials: Parameter Estimation

𝝁 A B C AB AC BC ABC

(1) + − − − + + + −

𝑎 + + − − − − + +

𝑏 + − + − − + − +

𝑎𝑏 + + + − + − − −

𝑐 + − − + + − − +

𝑎𝑐 + + − + − + − −

𝑏𝑐 + − + + − − + −

𝑎𝑏𝑐 + + + + + + + +

weight 1/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4

total 

effect
 𝜇 2 ⋅  𝛼2 2 ⋅  𝛽2 2 ⋅  𝛾2 2 ⋅  (𝛼𝛽)22 2 ⋅  (𝛼𝛾)22 2 ⋅  (𝛽𝛾)22 2 ⋅  (𝛼𝛽𝛾)222

estimate 𝟏𝟕𝟏. 𝟕𝟓 𝟏𝟓. 𝟓 −𝟏𝟑𝟐. 𝟓 −𝟕𝟑. 𝟓 𝟏𝟑. 𝟓 𝟏. 𝟓 𝟒𝟕. 𝟓 𝟐. 𝟓



 Compare with output of R (see R-file).

 How can we test the contrasts (factors) or construct 

confidence intervals?

 If we have a complete 2𝑘 design and if we assume the 

standard ANOVA model with an error variance of 𝜎2 we 

have for each estimated effect (contrast) a variance of

1

2𝑘−1

2

2𝑘𝜎2 =
𝜎2

2𝑘−2

 In addition, if the true effect is zero, the expected value of 

every estimated effect (contrast) is zero too.

 Last but not least, the estimated effects are normally 

distributed and independent.
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Two-Series Factorials: Parameter Estimation

due to weight due to sum



 Hence, estimates corresponding to “null effects”

behave like independent samples from a normal 

distribution with mean 0 and constant variance.

 If we use the full model (i.e., including all interactions) we 

do not have any df’s left for the error term if we have no 

replicates.

 However, thanks to the aforementioned properties we can 

do a graphical “analysis” of the effects using

 pareto chart 

 halfnormal plot

of the estimated effects.
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Two-Series Factorials: Inference



 Barplot of absolute value of estimated effects.

 Can we identify two groups?
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Two-Series Factorials: Pareto Chart



 Plot sorted absolute effect values against quantiles of 

absolute value of a standard normal distribution.

 Can we detect any outliers?
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Two-Series Factorials: Half-Normal Plot



 If we drop the 3-way interaction we have 1 (!) degree of 

freedom left for estimating the error variance.

 We can do tests in this situation

 This basically confirms the graphical analysis.

 However: effect size is at least as important as statistical 

significance!
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Two-Series Factorials: Analysis



 Assume that we cannot do a complete 2𝑘 design in one 

day but that we are able to do half of the settings in one 

day.

 How should we “distribute” the factor level combinations 

over the two days?

 We do it by using confounding…

 The idea is to “sacrifice” some effects in order to “protect” 

the important ones.

 Splitting up the experiment in two blocks means losing 

efficiency as we have an incomplete block design (a 

day is a block). 

 The confounded effects are “lost”, while the others are 

“protected”.
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Confounding the Two-Series Factorial



 Example: What happens if we use the following 

experimental design:

 We are not able to distinguish the effect of 𝐴 from the 

effect of Day.

 𝐴 is confounded with Day in this setup. Hence, this was 

not a good choice because we sacrificed a main-effect!
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Confounding the Two-Series Factorial

Day 𝝁 A B C AB AC BC ABC

(1) 1 + − − − + + + −

𝑎 2 + + − − − − + +

𝑏 1 + − + − − + − +

𝑎𝑏 2 + + + − + − − −

𝑐 1 + − − + + − − +

𝑎𝑐 2 + + − + − + − −

𝑏𝑐 1 + − + + − − + −

𝑎𝑏𝑐 2 + + + + + + + +



 We say that we confounded the 2𝑘 design into two blocks 

of size 2𝑘−1.

 However, our confounding choice was not optimal as we 

sacrificed a main-effect.

 Better: use a high-order interaction as so called defining 

contrast.

 The idea is to have a look at the column of the defining 

contrast: all “+” go in one block and all “−” go in the other 

block.

 We have completely “lost” the defining contrast as it is 

confounded with block.
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Confounding the Two-Series Factorial



 Hence, if we use the 3-way interaction as defining 

contrast we get

 Here, we would run the configurations 1 , 𝑎𝑏, 𝑎𝑐, 𝑏𝑐 on 

day 1 and 𝑎, 𝑏, 𝑐, 𝑎𝑏𝑐 on day 2.
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Confounding the Two-Series Factorial

Day 𝝁 A B C AB AC BC ABC

(1) 1 + − − − + + + −

𝑎 2 + + − − − − + +

𝑏 2 + − + − − + − +

𝑎𝑏 1 + + + − + − − −

𝑐 2 + − − + + − − +

𝑎𝑐 1 + + − + − + − −

𝑏𝑐 1 + − + + − − + −

𝑎𝑏𝑐 2 + + + + + + + +



 The block containing (1) is called the principal block

while the other block is called the alternate block.

 What if we want to build more than two blocks? 

 Say we want to confound a 24 design into 4 blocks of size 

4 (4 = 22).

 Start with two defining contrasts, say 𝐴𝐵𝐶 and 𝐵𝐶𝐷. 

 Our 4 blocks are built by using as “block assignment” the 

4 different combinations of 𝐴𝐵𝐶 and 𝐵𝐶𝐷, that is 
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Confounding the Two-Series Factorial

ABC BCD Block

− − 1

+ + 2

+ − 3

− + 4



 As we have 4 blocks (i.e., 3 df’s) there must be a third

effect that we are confounding.

 It is the effect that is given by the product of the two 

effects which is 

𝐴𝐵𝐶 ⋅ 𝐵𝐶𝐷 = 𝐴𝐵2𝐶2𝐷 = 𝐴𝐷

 The rule is: squared terms are disappearing.

 𝐴𝐷 is also called the generalized interaction of 𝐴𝐵𝐶 and 

𝐵𝐶𝐷.

 If we would choose 𝐴𝐵𝐶𝐷 and 𝐵𝐶𝐷 as defining contrasts, 

the generalized interaction would we 𝐴, i.e. we would 

confound the main-effect of 𝐴.
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Confounding the Two-Series Factorial



 If we have replicates, we can do the “standard” ANOVA as 

we have an estimate for the error term.

 If we have no replicates, we can either pool some of the 

higher-order interactions into the error term (i.e., not using 

them in the model) or use the graphical tools presented 

earlier.

 The difficult part here was the design, not the analysis.

25

Analysis of Confounded Two-Series Factorials


