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Incomplete Block Designs

Up to now we only considered complete block designs.
This means we would see all treatments in each block.

In some situations this is not possible because

= (physical) block size is too small

= t00 expensive

= not advisable (think of rater having to rate 7 champagne brands)

Remember the eye-drop example? What if we
wanted to test 3 different eye-drop types?

It is still a good idea to block on subjects, but
obviously it is not possible to have complete
blocks in this example!




Example: Eye-Drops (oenlert, 2000)

= Suppose we have 3 subjects getting the following
treatments (4, B, C). This is an incomplete block design.

Subject 1 Subject 2 Subject 3

A A B
B C C

= |f we want to estimate the difference between 4 and B we
can use
= Subject 1: the estimate has variance 2¢2.
= Combine subject 2 and subject 3:
A-B=A-C)—(B-0)
This difference of differences has variance 202 + 20% = 40°.

= |n acomplete block design we could estimate the
difference on each block with the same precision.



Incomplete Block Designs

= We have to be careful on what pairs of treatments we put
In the same block.

= We call a design disconnected if we can build two
groups of treatments such that it never happens that we
see members of both groups in the same block.

= Example:
--m-ﬂ
B ! D
B C c | E F F
l

= |nadisconnected design, it is not possible to
estimate all treatment differences!

= |f the design is not disconnected, we call it connected.



Balanced Incomple Block Designs (BIBDs)

= We call an incomplete block design balanced (BIBD) if all
pairs of treatments occur together in the same block
equally often (we denote this number by 7).

= What is the benefit of the “balancedness” property?

= The precision (variance) of the estimated treatment
differences a; — a; Is the same no matter what

combination of i and j we are considering.

= This means that we can estimate all treatment differences
with the same accuracy.

= Let us first give an overview of the different numbers
Involved in such a problem.



Balanced Incomple Block Designs (BIBDs)

= We use the following notation:
= g number of treatments
= b number of blocks
= k number of units per block with k < g
= r number of replicates per treatment
= N: total number of units

= |n the eye-drop example we had
= g = 3 treatments (the different eye-drops: 4, B, C)
= b = 3 blocks (the 3 subjects)
= k = 2 units per block (the 2 eyes per subject)
= r = 2 replicates per treatment
= N=6

= Ofcourseitmustholdthat N=b-k=g-r.



Unreduced BIBDs

We can always find a BIBD for every setting of k < g.
How? Simply use all possible combinations.

The number of combinations is (‘Z) (= binomial coeff.).

7
3

In R, have a look at function choose and combn.

E.g.,forg=7and k =3 we have( )= 35.

We call such a design an unreduced balanced
Incomplete block design.

In practice it is often not possible to have so many blocks.



Balanced Incomple Block Designs (BIBDs)

A treatment occurs in r blocks.

There are k — 1 other “available units” in each of these
blocks which makes a total of r - (k — 1) “available units”.

The remaining g — 1 treatments must be divided evenly
among them, otherwise the design is not balanced.

r-(k—1)
g—1

Hence must be a whole number (= 2).
Condition is only necessary, not sufficient. This means:
even If condition is fulfilled, it might be the case that you
cannot find a BIBD!



Example: Champagne (roth, 2013)

= 14 raters, 7 champagne types, every rater rated 3 of
them.
1] 2 (3] 4/5 /6] 78] 9 101 ]12][13] 14
2 1 2 2 1 3 1 1 3 3 1 1 4 2
6 3 6 4 2 5 4 2 4 5 4 5 5 3
7 6 7 5 3 7 7 5 6 7 7 6 6 4

= This is a BIBD. We see every treatment combination
exactly twice in the same block.

= |n more detail we have
= g = 7 treatments
b = 14 blocks
= k = 3 units per block
= r = 6 replicates per treatment

r(k—=1) _ 62
g—1 6

= 2.

= Hence, A =



BIBD: Finding a Design
= First make sure that necessary condition is fulfilled.

= Old way: check Appendix C.2 of the book with a list of
BIBDs.

= Use R, e.g. function £ind.BIB in package crossdes
(among many others)

= See R-File for an example.



(B)IBD: Randomization

How can we randomize a given (B)IBD?
Randomize blocks to the groups of treatment letters.

Within each block: randomize assignment of treatment
letters to physical units.

Randomize assignment of treatment letters to actual
treatments.

How can we analyze an incomplete block design?
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(B)IBD: Analysis

The model for a (balanced) incomplete block design is the
standard model, i.e.

Yii=u+a;+ B+ &;

/[ N\

effect of effect of
treatment block

However, as we don't observe all treatment x block
combinations, the “usual” estimates are not working and
we need the computer to find the least squares estimates.

We are using type Ill sum of squares to test treatment
effects adjusted for block effects.

That means, we analyze treatment while we control for
the block effects.
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Intra- and Interblock Analysis

This is a so called intrablock analysis of the (B)IBD.

It is also possible to recover some information by
comparing different blocks.

This would be called an interblock analysis.

Information from both approaches can be suitably
combined.

This looks complicated in the book, but it is nothing else
than the analysis when treating the block factor as
random.

We will not discuss this any further.
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Example: Dish Detergent (oehlert, 2000, Ex. 14.2)

= Want to compare 9 different dishwashing solutions.

-ﬂ-ﬂ-----

Base detergent control

Additive 3 2 1 0 3 2 1 0 control

= Available resources
= 3 washing basins
= 1 operator for each basin

= The three operators wash at the same speed during each
test, but speed might vary from test to test.

= Response: Number of plates washed when foam
disappears.
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Example: Dish Detergent (oehlert, 2000, Ex. 14.2)
= |f we have 12 sessions, we can find a BIBD.

= The design was as follows:
HE DTN ES
A D G A B C A B C A B C
B E H D E F E F D F D E

C F )i G H )i )i G H H )i G

= Analysisin R

> fit <- aov(dishes ~ session + detergent, data = dish)
> dropl(fit, test = "F")
Single term deletions

Model:
dishes ~ session + detergent
Df sum of sq RSS AIC F value Pr(>F)
<none> 13.19 3.841
session 11 10.06 23.25 2.260 1.1103 0.4127

detergent &  1086.81 1100.00 147.104 164.8539 6.809e-14 #**
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Example: Dish Detergent (oehlert, 2000, Ex. 14.2)

= |fwe call summary.lm we get

> summary. Im(fit)

call:
aov(formula = dishes ~ session + detergent, data = dis

Residuals:
Min 10 Median 30 Max
-1.1482 -0.5556 0.1111 0.4630 1.0000

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 18.7037 0.6766 27.643 6.21le-15 #=%

sessionl0 1.4074 0.8194 1.718 0.105170

sessionll 0.6296 0.8194 0.768 0.453458

sessionl?2 0.8519 0.8194 1.040 0.313998

session? 1.1111 0.8559 1.298 0.212612

session3 0.4444 0.8559 0.519 0.610667

session4 0.9259 0.8194 1.130 0.275148

session5 1.1481 0.8194 1.401 0.180266 Here we used contr.treatment. The
5955'!0“2 i-%ﬁ% g-gigj g-gég g-g%gi%g ¥ coefficients are therefore comparisons to
sSession . . . . -

session8 0.6296 0.8194 0.768 0.453458 e METRTENEE UEELMENT (= RELERYE. 1)
cession9 1.4074 0.8194 1.718 0.105170 Note that the standard error is the same
detergent2 -2.5556 0.7412 -3.448 0.003309 ** for all effects which is a property of the
detergent3  -6.5556 0.7412 -8.844 1.47e-07 *** balanced design.

detergent4 -13.2222 0.7412 -17.839 5.54e-12 #%*

detergent5 5.5556 0.7412 7.495 1.28e-06 =#*

detergent6 3.2222 0.7412 4.347 0.000499 ===

detergent?7 1.3333 0.7412 1.799 0.090928 .

detergent$8 -0.5556 0.7412 -0.750 0.464416

detergent9 9.7778 0.7412 13.192 5.16e-10 =#=%
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Partially Balanced Incomplete Block Designs

= |t might very well be the case that we are in a situation
where there is no BIBD available.

= |n that case we could use a partially balanced incomplete
block design, where some treatment pairs occurring
together more often than other pairs.

= Example (Kuehl, 2000, Display 9.3)

1 2 3
4 5 6
2 3 1
5 6 4

= (1,4),(2,5),(3,6) are observed twice, remaining pairs
only once together in the same block.

= The analysis is the same as for a BIBD!
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Row-Column Incomplete Block Designs

= As we have seen with RCBs we are sometimes facing the
situation where we have more than one block factor
(remember Latin Squares?).

= Latin Squares are often impractical due to their very strict
constraint on the design.

= Arow-column incomplete block design is a design
where we block on rows and columns and one or both of
them are incomplete blocks.
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Example: Car Tires (Kuehl, 2000)

= Suppose we want to evaluate 7 treatments instead of 4.

= Assume that we have 7 cars and the following design

position | ° | ° o Ml oV (=" =0l 4 i |
6 7 1 2

3 4 5

:: 5 6 7 1 2 3 4
:: 6 7 1 2 3 4 5
%® 7 1 2 3 4 5 6

= The positions are complete blocks, the rows form a
BIBD. This is a so called row-orthogonal design.



Youden Squares

A Youden Square is rectangular (!) such that
= columns (rows) form a BIBD
= rows (columns): every treatment appears equally often

Hence, columns form a BIBD, rows an RCB.

The model is as before:

Vijg = H+a; + B + Vi + €k

R B

Block factor 1 Block factor 2
treatment
(rows) (columns)

Analysis in R “as usual”, just make sure to use dropl to
ensure that the correct sum of squares is being used.
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Example: Lithium in Blood (Oehlert, 2000, Ex. 14.5)

= Study was performed to measure blood concentration
of lithium 12 hours after administering lithium carbonite
using
= A: 300mg capsule
= B:250mg capsule

= (:450mg time delay capsule
= D: 300mg solution

= 12 subjects, each will be measured twice, 1 week apart
 Week | 1|2 [3]4/5]6]7[8]9 10[11]12
1 A D C B D D B B C A A C
2 B C A C A B A D D D C B

= Response: serum lithium level.
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Example: Lithium in Blood (Oehlert, 2000, Ex. 14.5)
= We block on both rows (weeks) and columns (subjects).
= Every treatment appears 3 times in each week.
= The columns form a BIBD.
= Analysisin R
> fit <- aov(hour.1l2 ~ subject + period + treatment, data = 1ith)

> dropl(fit, test = "F")
Single term deletions

Model:
hour.12 ~ subject + period + treatment

Df sum of sq RSS AIC F value Pr(>F)
<nonex> 0.016203 -143.22
subject 11 0.029946 0.046149 -140.09 1.3442 0.3449
period 1 0.031974 0.048177 -119.06 15.7871 0.0041 ==
treatment 3 0.005603 0.021806 -142.09 0.9222 0.4728

= Unfortunately we cannot detect any treatment effect. [ **
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Summary

= Balancedness properties etc. ensure that we are
performing the experiment as efficient as possible.

= |f a design is not balanced anymore, we lose efficiency
but we can typically still analyze the data.

= EXceptions are (e.g.) cases where a disconnected design
has been used and the focus was on comparing all
treatments.

= Package overview:
https://cran.r-project.org/web/views/ExperimentalDesign.html
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