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Split Plot Designs



 A split plot design is a special case of a factorial 

treatment structure.

 It is used when some factors are harder (or more 

expensive) to vary than others.

 Basically a split plot design consists of two experiments

with different experimental units of different “size”.

 E.g., in agronomic field trials certain factors require “large” 

experimental units, whereas other factors can be easily 

applied to “smaller” plots of land.

 Let us have a look at an example…

What is a Split Plot Design? (Oehlert, 2000, Chapter 16.1) 
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 Consider the following factorial problem:
 3 different irrigation levels

 4 different corn varieties

 Response: biomass

 Available resources: 6 plots of land

 By definition we can not vary the irrigation level on a too 

small scale.

 We are “forced” to use “large” experimental units for the 

irrigation level factor.

 Assume that we can use a specific irrigation level on each 

of the 6 plots. 

Example I: Irrigation and Corn Variety (Oehlert, 2000)
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 Randomly assign each irrigation level to 2 of the plots (the 

so called whole plots or main plots). 

 In every of the plots, randomly assign the 4 different corn 

varieties to the so called split plots.

 Two independent randomizations are being performed!

 We also call irrigation level the whole-plot factor and 

corn variety the split-plot factor.
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Example I: Irrigation and Corn Variety
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 Whole plots (plots of land) are the experimental units for 

the whole-plot factor (irrigation level).

 Split plots (subplots of land) are the experimental units 

for the split-plot factor.

 In the split-plot “world”, whole plots act as blocks.

 Basically, we are performing two different experiments 

in one:
 each experiment has its own randomization

 each experiment has its own idea of experimental unit
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Example I: Irrigation and Corn Variety



 How can we model such kind of data?

 We use a mixed model formulation with two different 

errors

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝜂𝑘 𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜀𝑘 𝑖𝑗

 This means: Observations in the same whole plot share 

the same whole-plot error 𝜂𝑘 𝑖 .

 In R, this model is easily fitted using lmer with a random 

effect (better terminology: error) of the form 
(1|whole.plot)
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Example I: Irrigation and Corn Variety
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 Two piano types (baby grand / concert grand) 

from each of 4 manufacturers.

 40 music students are divided at random into 8 groups  

(“panels”) of 5 students each.

 Two panels are assigned at random to each manufacturer 

(= 2 panels per manufacturer).

 Each panel goes to the concert hall and hears 

(blindfolded) the sound of both pianos (in random order).

 Response: Average rating of the 5 students in the panel 

(hence, student is “only” measurement unit here).

6

Example II: Pianos (Oehlert, 2000)



 The whole plots are the 8 panels.

 The whole-plot factor is the manufacturer.

 The split plots are the two sessions.

 The split-plot factor is the piano type (baby vs. concert 

grand).
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Example II: Pianos
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 The model is the same:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝜂𝑘 𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜀𝑘 𝑖𝑗

 Again: This means that observations in the same whole-

plot share the same whole-plot error 𝜂𝑘 𝑖 and are 

therefore not independent.
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Example II: Pianos
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 Dataset oats from R-package MASS.

 As stated in the help file:

The yield of oats from a split-plot field trial using three varieties and 

four levels of manurial treatment. The experiment was laid out in 6 

blocks of 3 main plots, each split into 4 sub-plots. The varieties were 

applied to the main plots and the manurial treatments to the sub-plots.

 Overview of data:
 6 different blocks (B)

 3 different varieties (V)

 4 different nitrogen treatments (N)

 Response (Y): Yields (in ¼ lbs per sub-plot, each of area 
1

80
acre).

 Let us first have a graphical overview of the experimental 

design.
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Example III: Oats
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Example III: Oats
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 This is a more complicated design as before as we have 

an additional block factor.

 A whole-plot is given by a plot of land in a block.

 The whole-plot factor is variety.

 A block design (RCB) was used at the whole-plot level.

 A split plot is given by a subplot of land.

 The split-plot factor is given by nitrogen treatment.
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Example III: Oats



 We have an RCB for the whole-plot factor.

 The experimental unit on the whole-plot level is given by 

the combination of block and variety.

 We therefore use the model

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛾𝑘 + 𝜂𝑖𝑘 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜀𝑖𝑗𝑘
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Example III: Oats
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Example III: Oats

 In R we use the lmer function with an extra random effect 

(error) per combination of block and variety.

 We get the following output

 Observe that the test for variety uses 2 and 10 degrees of 

freedom. 

 Why? Let us a have a closer look at the potential ANOVA 

table on the whole-plot level.



 On the whole-plot level we have the following ANOVA 

table:

 Think of averaging “away” the nitrogen factor, hence we 

have one observation per combination of block and 

variety.

 Technically speaking, variety is tested against the 

interaction of block and variety.
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Example III: Oats

Source df

Block 5

Variety 2

Error (whole-plot) 10 (= 17 − 7)

Total 17 (= 18 − 1)



 This also reveals a problem: We don’t have too many 

error df’s left to test the whole-plot factor (only 10).

 In contrast, we test everything involving the split-plot 

factor against the residual error, which has 45 df’s.

 Remember:

 Hence, all effects involving the whole-plot factor are 

estimated less precisely and tests are less powerful.
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Example III: Oats



 Split-plot designs can also arise in (much) more 

complicated designs.

 There can be more than one whole-plot factor. E.g., think 

of a two-way factorial on the whole-plot level.

 In addition, there can be more than one factor on the split-

plot level.

 To get the correct model we “only” have to follow “the 

path of randomization”.

 For every “level” (whole-plot / split-plot) of the experiment 

we have to introduce a corresponding random effect 

(better terminology: error) which acts as the experimental 

error on that level.
16

General Situation



 This means: 

 Start on the whole-plot level and forget about the split-plots.

 Write down the corresponding model equation (incl. random effect / 

error).

 Move on to the next level, expand equation with new terms (the 

upper level is now a block)

 Etc.

 In R we just have to make sure that we tell lmer the 

correct random effects. 

 In R it is sometimes useful to define new variables which 

identify the different experimental units on the different 

levels.
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General Situation



 Experiment studies the effect of 
 nitrogen (4 levels of nitrogen)

 weed (3 levels)

 clipping treatments (2 levels: clipping / no clipping)

on plant growth in wetlands.

 Experiment was performed as follows:
 8 trays, whereof each holds three artificial wetlands (rectangular 

wire baskets)
 4 of the trays were placed on a table near the door of the greenhouse

 4 of the trays on a table in the center of the greenhouse

 On each table, we randomly assign one of the trays to each of the 

4 nitrogen treatments.

 Within each tray, we randomly assign the 3 weed treatments.

 In addition, each wetland is split in half. One half is chosen at 

random and will be clipped, the other half is not clipped.

 After 8 weeks: measure fraction of biomass that is nonweed.
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Example IV: Weed Biomass in Wetlands (Oehlert, 2000, Ex. 16.7)



Experimental layout
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Example IV: Weed Biomass in Wetlands
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 Let us follow the path of randomization:

 Position in the greenhouse is a block factor (center / door)

 Trays are whole plots, and nitrogen level is the whole-plot 

factor.

 Wetlands are split plots and weed treatment is the split-plot 

factor.

 Wetland halves are so called split-split plots and clipping is the 

split-split-plot factor.

 Hence, we have a so-called split-split plot.

 Let us now try to fit a model to this data-set in R.
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Example IV: Weed Biomass in Wetlands



21

Example IV: Weed Biomass in Wetlands

 We use the following model

 All main-effects and the nitrogen × weed interaction

are significant.



 We are here performing 3 experiments in 1.

 On the whole-plot level we have the “experiment”

 On the split-plot level we have the “experiment”

22

Example IV: Weed Biomass in Wetlands

Source df

Table (block) 1

Nitrogen 3

Error (per tray) 𝟑 (= 7 − 4)

Total 7 (= 8 − 1)

Source df

Block (=Tray) 7

Weed 2

Weed × Nitrogen 6

Error (per wetland) 𝟖 (= 23 − 15)

Total 23 (= 24 − 1)



 On the split-split-plot level we have the “experiment”
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Example IV: Weed Biomass in Wetlands

Source df

Block (= wetland) 23

Clipping 1

Weed × Clipping 2

Nitrogen × Clipping 3

Nitrogen × Weed × Clipping 6

Error (per wetland half) 𝟏𝟐 (= 47 − 35)

Total 47 (= 48 − 1)



 Split plot designs and more complicated versions thereof 

are useful if some factors are harder (more expensive, …) 

to vary than others.

 To identify the correct design we have to know the 

randomization procedure.

 The general situation can be very complex, but by 

following the different randomization levels/steps, setting 

up a model is easy.

 Mixed effects software like lmer automatically identifies 

the correct denominator for tests if the random effects / 

errors are stated correctly.
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Summary


