
Lukas Meier, Seminar für Statistik

Split Plot Designs



 A split plot design is a special case of a factorial 

treatment structure.

 It is used when some factors are harder (or more 

expensive) to vary than others.

 Basically a split plot design consists of two experiments

with different experimental units of different “size”.

 E.g., in agronomic field trials certain factors require “large” 

experimental units, whereas other factors can be easily 

applied to “smaller” plots of land.

 Let us have a look at an example…

What is a Split Plot Design? (Oehlert, 2000, Chapter 16.1) 
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 Consider the following factorial problem:
 3 different irrigation levels

 4 different corn varieties

 Response: biomass

 Available resources: 6 plots of land

 By definition we can not vary the irrigation level on a too 

small scale.

 We are “forced” to use “large” experimental units for the 

irrigation level factor.

 Assume that we can use a specific irrigation level on each 

of the 6 plots. 

Example I: Irrigation and Corn Variety (Oehlert, 2000)
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 Randomly assign each irrigation level to 2 of the plots (the 

so called whole plots or main plots). 

 In every of the plots, randomly assign the 4 different corn 

varieties to the so called split plots.

 Two independent randomizations are being performed!

 We also call irrigation level the whole-plot factor and 

corn variety the split-plot factor.
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Example I: Irrigation and Corn Variety
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 Whole plots (plots of land) are the experimental units for 

the whole-plot factor (irrigation level).

 Split plots (subplots of land) are the experimental units 

for the split-plot factor.

 In the split-plot “world”, whole plots act as blocks.

 Basically, we are performing two different experiments 

in one:
 each experiment has its own randomization

 each experiment has its own idea of experimental unit
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Example I: Irrigation and Corn Variety



 How can we model such kind of data?

 We use a mixed model formulation with two different 

errors

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝜂𝑘 𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜀𝑘 𝑖𝑗

 This means: Observations in the same whole plot share 

the same whole-plot error 𝜂𝑘 𝑖 .

 In R, this model is easily fitted using lmer with a random 

effect (better terminology: error) of the form 
(1|whole.plot)

5

Example I: Irrigation and Corn Variety
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 Two piano types (baby grand / concert grand) 

from each of 4 manufacturers.

 40 music students are divided at random into 8 groups  

(“panels”) of 5 students each.

 Two panels are assigned at random to each manufacturer 

(= 2 panels per manufacturer).

 Each panel goes to the concert hall and hears 

(blindfolded) the sound of both pianos (in random order).

 Response: Average rating of the 5 students in the panel 

(hence, student is “only” measurement unit here).
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Example II: Pianos (Oehlert, 2000)



 The whole plots are the 8 panels.

 The whole-plot factor is the manufacturer.

 The split plots are the two sessions.

 The split-plot factor is the piano type (baby vs. concert 

grand).
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Example II: Pianos
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 The model is the same:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝜂𝑘 𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜀𝑘 𝑖𝑗

 Again: This means that observations in the same whole-

plot share the same whole-plot error 𝜂𝑘 𝑖 and are 

therefore not independent.
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Example II: Pianos
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 Dataset oats from R-package MASS.

 As stated in the help file:

The yield of oats from a split-plot field trial using three varieties and 

four levels of manurial treatment. The experiment was laid out in 6 

blocks of 3 main plots, each split into 4 sub-plots. The varieties were 

applied to the main plots and the manurial treatments to the sub-plots.

 Overview of data:
 6 different blocks (B)

 3 different varieties (V)

 4 different nitrogen treatments (N)

 Response (Y): Yields (in ¼ lbs per sub-plot, each of area 
1

80
acre).

 Let us first have a graphical overview of the experimental 

design.
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Example III: Oats
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Example III: Oats
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 This is a more complicated design as before as we have 

an additional block factor.

 A whole-plot is given by a plot of land in a block.

 The whole-plot factor is variety.

 A block design (RCB) was used at the whole-plot level.

 A split plot is given by a subplot of land.

 The split-plot factor is given by nitrogen treatment.
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Example III: Oats



 We have an RCB for the whole-plot factor.

 The experimental unit on the whole-plot level is given by 

the combination of block and variety.

 We therefore use the model

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛾𝑘 + 𝜂𝑖𝑘 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜀𝑖𝑗𝑘
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Example III: Oats
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Example III: Oats

 In R we use the lmer function with an extra random effect 

(error) per combination of block and variety.

 We get the following output

 Observe that the test for variety uses 2 and 10 degrees of 

freedom. 

 Why? Let us a have a closer look at the potential ANOVA 

table on the whole-plot level.



 On the whole-plot level we have the following ANOVA 

table:

 Think of averaging “away” the nitrogen factor, hence we 

have one observation per combination of block and 

variety.

 Technically speaking, variety is tested against the 

interaction of block and variety.
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Example III: Oats

Source df

Block 5

Variety 2

Error (whole-plot) 10 (= 17 − 7)

Total 17 (= 18 − 1)



 This also reveals a problem: We don’t have too many 

error df’s left to test the whole-plot factor (only 10).

 In contrast, we test everything involving the split-plot 

factor against the residual error, which has 45 df’s.

 Remember:

 Hence, all effects involving the whole-plot factor are 

estimated less precisely and tests are less powerful.
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Example III: Oats



 Split-plot designs can also arise in (much) more 

complicated designs.

 There can be more than one whole-plot factor. E.g., think 

of a two-way factorial on the whole-plot level.

 In addition, there can be more than one factor on the split-

plot level.

 To get the correct model we “only” have to follow “the 

path of randomization”.

 For every “level” (whole-plot / split-plot) of the experiment 

we have to introduce a corresponding random effect 

(better terminology: error) which acts as the experimental 

error on that level.
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General Situation



 This means: 

 Start on the whole-plot level and forget about the split-plots.

 Write down the corresponding model equation (incl. random effect / 

error).

 Move on to the next level, expand equation with new terms (the 

upper level is now a block)

 Etc.

 In R we just have to make sure that we tell lmer the 

correct random effects. 

 In R it is sometimes useful to define new variables which 

identify the different experimental units on the different 

levels.
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General Situation



 Experiment studies the effect of 
 nitrogen (4 levels of nitrogen)

 weed (3 levels)

 clipping treatments (2 levels: clipping / no clipping)

on plant growth in wetlands.

 Experiment was performed as follows:
 8 trays, whereof each holds three artificial wetlands (rectangular 

wire baskets)
 4 of the trays were placed on a table near the door of the greenhouse

 4 of the trays on a table in the center of the greenhouse

 On each table, we randomly assign one of the trays to each of the 

4 nitrogen treatments.

 Within each tray, we randomly assign the 3 weed treatments.

 In addition, each wetland is split in half. One half is chosen at 

random and will be clipped, the other half is not clipped.

 After 8 weeks: measure fraction of biomass that is nonweed.
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Example IV: Weed Biomass in Wetlands (Oehlert, 2000, Ex. 16.7)



Experimental layout
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Example IV: Weed Biomass in Wetlands
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 Let us follow the path of randomization:

 Position in the greenhouse is a block factor (center / door)

 Trays are whole plots, and nitrogen level is the whole-plot 

factor.

 Wetlands are split plots and weed treatment is the split-plot 

factor.

 Wetland halves are so called split-split plots and clipping is the 

split-split-plot factor.

 Hence, we have a so-called split-split plot.

 Let us now try to fit a model to this data-set in R.
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Example IV: Weed Biomass in Wetlands
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Example IV: Weed Biomass in Wetlands

 We use the following model

 All main-effects and the nitrogen × weed interaction

are significant.



 We are here performing 3 experiments in 1.

 On the whole-plot level we have the “experiment”

 On the split-plot level we have the “experiment”

22

Example IV: Weed Biomass in Wetlands

Source df

Table (block) 1

Nitrogen 3

Error (per tray) 𝟑 (= 7 − 4)

Total 7 (= 8 − 1)

Source df

Block (=Tray) 7

Weed 2

Weed × Nitrogen 6

Error (per wetland) 𝟖 (= 23 − 15)

Total 23 (= 24 − 1)



 On the split-split-plot level we have the “experiment”
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Example IV: Weed Biomass in Wetlands

Source df

Block (= wetland) 23

Clipping 1

Weed × Clipping 2

Nitrogen × Clipping 3

Nitrogen × Weed × Clipping 6

Error (per wetland half) 𝟏𝟐 (= 47 − 35)

Total 47 (= 48 − 1)



 Split plot designs and more complicated versions thereof 

are useful if some factors are harder (more expensive, …) 

to vary than others.

 To identify the correct design we have to know the 

randomization procedure.

 The general situation can be very complex, but by 

following the different randomization levels/steps, setting 

up a model is easy.

 Mixed effects software like lmer automatically identifies 

the correct denominator for tests if the random effects / 

errors are stated correctly.
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Summary


